論文の概要: The Adversarial Resilience Learning Architecture for AI-based Modelling,
Exploration, and Operation of Complex Cyber-Physical Systems
- arxiv url: http://arxiv.org/abs/2005.13601v1
- Date: Wed, 27 May 2020 19:19:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 09:06:34.251875
- Title: The Adversarial Resilience Learning Architecture for AI-based Modelling,
Exploration, and Operation of Complex Cyber-Physical Systems
- Title(参考訳): AIに基づく複雑なサイバー物理システムのモデリング・探索・運用のための逆レジリエンス学習アーキテクチャ
- Authors: Eric MSP Veith, Nils Wenninghoff, and Emilie Frost
- Abstract要約: 本稿では、複雑な環境チェックとレジリエントな操作に対する新しいアプローチを定式化する、ARL(Adversarial Learning)の概念について述べる。
ARLのクインテッサンスは、システムを探究し、ドメインの知識なしに互いに訓練するエージェントの両方にある。
本稿では、モデルベースDRLベースのアルゴリズムと同様に、広範囲のモデルフリーを使用できるARLソフトウェアアーキテクチャを紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern algorithms in the domain of Deep Reinforcement Learning (DRL)
demonstrated remarkable successes; most widely known are those in game-based
scenarios, from ATARI video games to Go and the StarCraft~\textsc{II} real-time
strategy game. However, applications in the domain of modern Cyber-Physical
Systems (CPS) that take advantage a vast variety of DRL algorithms are few. We
assume that the benefits would be considerable: Modern CPS have become
increasingly complex and evolved beyond traditional methods of modelling and
analysis. At the same time, these CPS are confronted with an increasing amount
of stochastic inputs, from volatile energy sources in power grids to broad user
participation stemming from markets. Approaches of system modelling that use
techniques from the domain of Artificial Intelligence (AI) do not focus on
analysis and operation. In this paper, we describe the concept of Adversarial
Resilience Learning (ARL) that formulates a new approach to complex environment
checking and resilient operation: It defines two agent classes, attacker and
defender agents. The quintessence of ARL lies in both agents exploring the
system and training each other without any domain knowledge. Here, we introduce
the ARL software architecture that allows to use a wide range of model-free as
well as model-based DRL-based algorithms, and document results of concrete
experiment runs on a complex power grid.
- Abstract(参考訳): 深層強化学習(Dep Reinforcement Learning, DRL)の領域における現代のアルゴリズムは、ATARIのビデオゲームからGoやStarCraft〜\textsc{II}リアルタイム戦略ゲームに至るまで、ゲームベースのシナリオで広く知られている。
しかし、様々なDRLアルゴリズムを利用するCPS(Cyber-Physical Systems)の領域での応用はほとんどない。
現代のCPSはますます複雑になり、従来のモデリングや分析の方法を超えて進化しています。
同時に、これらのCPSは、電力グリッドの揮発性エネルギー源から市場からの幅広いユーザー参加に至るまで、確率的な入力の増加に直面している。
人工知能(AI)分野の技術を用いたシステムモデリングのアプローチは、分析や運用に重点を置いていない。
本稿では,複雑な環境チェックとレジリエント操作に対する新たなアプローチを定式化した,arl(adversarial resilience learning)の概念について述べる。
ARLのクインテッサンスは、システムを探究し、ドメインの知識なしに互いに訓練するエージェントの両方にある。
本稿では,モデルフリーとモデルベースDRLに基づくアルゴリズムを多用するARLソフトウェアアーキテクチャを紹介し,具体的な実験結果の文書化を複雑な電力網上で行う。
関連論文リスト
- Mastering the Digital Art of War: Developing Intelligent Combat Simulation Agents for Wargaming Using Hierarchical Reinforcement Learning [0.0]
対象とする観察抽象化、マルチモデル統合、ハイブリッドAIフレームワーク、階層的な強化学習フレームワークなど、包括的なアプローチを提案する。
線形空間減衰を用いた局所的な観測抽象化は,RL問題を単純化し,計算効率を向上し,従来の大域的観測法よりも優れた有効性を示す。
我々のハイブリッドAIフレームワークは、スクリプトエージェントとRLを同期させ、高レベルの決定にRLを、低レベルのタスクにスクリプトエージェントを活用し、適応性、信頼性、パフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-08-23T18:50:57Z) - Generative AI for Deep Reinforcement Learning: Framework, Analysis, and Use Cases [60.30995339585003]
深部強化学習(DRL)は様々な分野に広く適用されており、優れた成果を上げている。
DRLは、サンプル効率の低下や一般化の低さなど、いくつかの制限に直面している。
本稿では、これらの問題に対処し、DRLアルゴリズムの性能を向上させるために、生成AI(GAI)を活用する方法について述べる。
論文 参考訳(メタデータ) (2024-05-31T01:25:40Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
進化的アルゴリズムの構成要素として統合された強化学習は,近年,優れた性能を示している。
本稿では,RL-EA 統合手法,RL-EA が採用する RL-EA 支援戦略,および既存文献による適用について論じる。
RL-EAセクションの適用例では、RL-EAのいくつかのベンチマークおよび様々な公開データセットにおける優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-25T15:06:05Z) - The RL Perceptron: Generalisation Dynamics of Policy Learning in High
Dimensions [14.778024171498208]
強化学習アルゴリズムは、様々な領域において変形的であることが証明されている。
RLの多くの理論は、離散状態空間や最悪のケース解析に焦点を当てている。
本稿では,様々な学習プロトコルを捉えることができるRLの高次元解像モデルを提案する。
論文 参考訳(メタデータ) (2023-06-17T18:16:51Z) - Adaptive action supervision in reinforcement learning from real-world
multi-agent demonstrations [10.174009792409928]
マルチエージェントシナリオにおける実世界の実演からRLにおける適応的行動監視手法を提案する。
実験では,未知のソースとターゲット環境の異なるダイナミックスを用いて,チェイス・アンド・エスケープとフットボールのタスクを用いて,本手法がベースラインと比較して一般化能力と一般化能力のバランスを保っていることを示す。
論文 参考訳(メタデータ) (2023-05-22T13:33:37Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - Improving Generalization of Deep Reinforcement Learning-based TSP
Solvers [19.29028564568974]
本稿では,ディープラーニングアーキテクチャとDRL学習方法を含むMAGICという新しいアプローチを提案する。
マルチレイヤパーセプトロン,グラフニューラルネットワーク,アテンションモデルを統合したアーキテクチャでは,旅行セールスマンソリューションを逐次生成するポリシを定義している。
1) DRLポリシー更新をローカル検索とインターリーブし(新しいローカル検索技術を用いて)、(2) 新たなシンプルなベースラインを使用し、(3) 勾配学習を適用した。
論文 参考訳(メタデータ) (2021-10-06T15:16:19Z) - Scenic4RL: Programmatic Modeling and Generation of Reinforcement
Learning Environments [89.04823188871906]
リアルタイム戦略(RTS)環境では,多様な現実シナリオの生成が難しい。
既存のシミュレータのほとんどは環境をランダムに生成することに頼っている。
我々は、研究者を支援するために、既存の形式シナリオ仕様言語であるSCENICを採用する利点を紹介する。
論文 参考訳(メタデータ) (2021-06-18T21:49:46Z) - The AI Arena: A Framework for Distributed Multi-Agent Reinforcement
Learning [0.3437656066916039]
分散マルチエージェント強化学習のための柔軟な抽象化を備えたスケーラブルなフレームワークであるAI Arenaを紹介します。
複数の異なる学習環境において、一般的なRL技術よりも分散マルチエージェント学習アプローチによる性能向上を示す。
論文 参考訳(メタデータ) (2021-03-09T22:16:19Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
オフライン強化学習(RL)とは、環境相互作用の静的データセットからポリシーを学習する問題を指します。
オフラインRLのためのモデルベースアルゴリズムの最近の進歩の上に構築し、それらを高次元の視覚観測空間に拡張する。
提案手法は, 実測可能であり, 未知のPOMDPにおけるELBOの下限の最大化に対応している。
論文 参考訳(メタデータ) (2020-12-21T18:28:17Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
本稿では,複雑な視覚環境において,エージェントが低品質な実演を行えるようにするためのアプローチの組み合わせを提案する。
提案した目標指向のリプレイバッファ構築により,エージェントはデモにおいて複雑な階層的タスクを解くためのサブゴールを自動的に強調することができる。
私たちのアルゴリズムに基づくこのソリューションは、有名なMineRLコンペティションのすべてのソリューションを破り、エージェントがMinecraft環境でダイヤモンドをマイニングすることを可能にする。
論文 参考訳(メタデータ) (2020-06-17T15:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。