論文の概要: The CSIRO Crown-of-Thorn Starfish Detection Dataset
- arxiv url: http://arxiv.org/abs/2111.14311v1
- Date: Mon, 29 Nov 2021 03:21:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-30 14:59:21.673846
- Title: The CSIRO Crown-of-Thorn Starfish Detection Dataset
- Title(参考訳): csiro starfish 検出データセット
- Authors: Jiajun Liu, Brano Kusy, Ross Marchant, Brendan Do, Torsten Merz, Joey
Crosswell, Andy Steven, Nic Heaney, Karl von Richter, Lachlan Tychsen-Smith,
David Ahmedt-Aristizabal, Mohammad Ali Armin, Geoffrey Carlin, Russ Babcock,
Peyman Moghadam, Daniel Smith, Tim Davis, Kemal El Moujahid, Martin Wicke,
Megha Malpani
- Abstract要約: ソーン・オブ・ソーン・スターフィッシュのアウトブレイクはグレートバリアリーフでサンゴが失われた主な原因である。
我々はGBR上のCOTSアウトブレイクエリアから大規模で注釈付き水中画像データセットを公開します。
- 参考スコア(独自算出の注目度): 5.657660184917617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Crown-of-Thorn Starfish (COTS) outbreaks are a major cause of coral loss on
the Great Barrier Reef (GBR) and substantial surveillance and control programs
are underway in an attempt to manage COTS populations to ecologically
sustainable levels. We release a large-scale, annotated underwater image
dataset from a COTS outbreak area on the GBR, to encourage research on Machine
Learning and AI-driven technologies to improve the detection, monitoring, and
management of COTS populations at reef scale. The dataset is released and
hosted in a Kaggle competition that challenges the international Machine
Learning community with the task of COTS detection from these underwater
images.
- Abstract(参考訳): ソーン・オブ・ソーン・スターフィッシュ(COTS)のアウトブレイクはグレートバリアリーフ(GBR)におけるサンゴの喪失の大きな原因であり、COTSの個体群を生態的に持続可能なレベルまで管理するために、かなりの監視と管理プログラムが進行中である。
我々は,gbr上のcots発生地域から,大規模で注釈付きの水中画像データセットをリリースし,機械学習とai駆動技術の研究を奨励し,サンゴ礁規模のcots集団の検出,監視,管理を改善する。
データセットはKaggleコンペティションでリリースされ、これらの水中画像からのCOTS検出のタスクで、国際的な機械学習コミュニティに挑戦する。
関連論文リスト
- SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
公開されている注釈付きデータセットの欠如は、堅牢で機械学習駆動のセグメンテーションアルゴリズムの開発を妨げている。
SMILE-UHURAチャレンジは、7T MRIで取得したTime-of-Flightアンジオグラフィーの注釈付きデータセットを提供することで、公開されている注釈付きデータセットのギャップに対処する。
Diceスコアは、それぞれのデータセットで0.838 $pm$0.066と0.716 $pm$ 0.125まで到達し、平均パフォーマンスは0.804 $pm$ 0.15までになった。
論文 参考訳(メタデータ) (2024-11-14T17:06:00Z) - OXYGENERATOR: Reconstructing Global Ocean Deoxygenation Over a Century with Deep Learning [50.365198230613956]
既存の専門家が支配する数値シミュレーションは、地球温暖化や人的活動によって引き起こされる動的変動に追いつかなかった。
1920年から2023年までの世界の海洋脱酸素モデルを再構築するために,最初の深層学習モデルであるOxyGeneratorを提案する。
論文 参考訳(メタデータ) (2024-05-12T09:32:40Z) - Automatic Coral Detection with YOLO: A Deep Learning Approach for Efficient and Accurate Coral Reef Monitoring [0.0]
サンゴ礁は、人為的な影響や気候変動によって脅威にさらされている重要な生態系である。
本稿では,深層学習モデルを用いたサンゴ自動検出システムを提案する。
論文 参考訳(メタデータ) (2024-04-03T08:00:46Z) - Deep learning for multi-label classification of coral conditions in the
Indo-Pacific via underwater photogrammetry [24.00646413446011]
本研究はインド太平洋におけるサンゴの一般的な条件と関連するストレスを表わしたデータセットを作成する。
既存の分類アルゴリズムを評価し、サンゴの条件を自動的に検出し、生態情報を抽出する新しいマルチラベル手法を提案した。
提案手法はサンゴの条件を, 健康, 危害, 死, 汚物として正確に分類する。
論文 参考訳(メタデータ) (2024-03-09T14:42:16Z) - Pengembangan Model untuk Mendeteksi Kerusakan pada Terumbu Karang dengan
Klasifikasi Citra [3.254879465902239]
本研究はFlickr APIを用いてFlickrから収集した923枚の画像からなる特別なデータセットを利用する。
この研究で使用される方法は、機械学習モデル、特に畳み込みニューラルネットワーク(CNN)の使用を含む。
その結果,Stock-Scratch ResNetモデルは,精度と精度で事前学習モデルより優れていることがわかった。
論文 参考訳(メタデータ) (2023-08-08T15:30:08Z) - Robot Goes Fishing: Rapid, High-Resolution Biological Hotspot Mapping in
Coral Reefs with Vision-Guided Autonomous Underwater Vehicles [6.658103076536836]
生物学的ホットスポット検出は、サンゴ礁管理者が監視と介入のタスクのために限られた資源を優先するのに役立つ。
ここでは、自律型水中車両(AUV)とカメラ、そして視覚検出器とフォトグラムと組み合わせて、これらのホットスポットをマッピングし、識別する方法について検討する。
我々の知る限り、我々はAUVを使って視覚的に観察され、微細な生体ホットスポットマップを収集する最初の試みの1つを提示する。
論文 参考訳(メタデータ) (2023-05-03T16:12:47Z) - Deep object detection for waterbird monitoring using aerial imagery [56.1262568293658]
本研究では,商用ドローンで収集した空中画像を用いて,水鳥の正確な検出,数え,監視に使用できる深層学習パイプラインを提案する。
畳み込み型ニューラルネットワークを用いた物体検出装置を用いて,テキサス沿岸の植民地性営巣島でよく見られる16種類の水鳥を検出できることを示す。
論文 参考訳(メタデータ) (2022-10-10T17:37:56Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
有害な藻類(HAB)は養殖農場で重大な魚死を引き起こす。
現在、有害藻や他の植物プランクトンを列挙する標準的な方法は、顕微鏡でそれらを手動で観察し数えることである。
合成画像の生成にはGAN(Generative Adversarial Networks)を用いる。
論文 参考訳(メタデータ) (2022-08-03T20:15:55Z) - A Real-time Edge-AI System for Reef Surveys [6.070670469403929]
ソーン・オブ・ソーン・スターフィッシュ(英: Crown-of-Thorn Starfish、COTS)は、グレートバリアリーフでサンゴが失われた主な原因である。
我々は,COTSモニタリングのためのエッジデバイス上で,機械学習に基づく総合的な水中データ収集とキュレーションシステムを提案する。
論文 参考訳(メタデータ) (2022-08-01T04:06:14Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
シーライス分散と分布を効率的に推定するためのシーライス適応格子追跡手法を提案する。
具体的には、局所的な海洋特性に基づいて、オーシャンモデルの格子グラフにノードをマージすることで、適応的な空間メッシュを生成する。
提案手法は, 変動する気候下での海洋ライス寄生圧マップの予測モデルにより, 積極的養殖管理の促進を約束するものである。
論文 参考訳(メタデータ) (2021-06-24T17:29:42Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。