論文の概要: Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments
- arxiv url: http://arxiv.org/abs/2503.04096v1
- Date: Thu, 06 Mar 2025 05:13:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 17:59:00.674071
- Title: Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments
- Title(参考訳): 動水環境の長期モニタリングのための画像に基づく再局在とアライメント
- Authors: Beverley Gorry, Tobias Fischer, Michael Milford, Alejandro Fontan,
- Abstract要約: 本稿では,視覚的位置認識(VPR),特徴マッチング,画像分割を組み合わせた統合パイプラインを提案する。
本手法は, 再検討領域のロバスト同定, 剛性変換の推定, 生態系変化の下流解析を可能にする。
- 参考スコア(独自算出の注目度): 57.59857784298534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective monitoring of underwater ecosystems is crucial for tracking environmental changes, guiding conservation efforts, and ensuring long-term ecosystem health. However, automating underwater ecosystem management with robotic platforms remains challenging due to the complexities of underwater imagery, which pose significant difficulties for traditional visual localization methods. We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images. This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes. Furthermore, we introduce the SQUIDLE+ VPR Benchmark-the first large-scale underwater VPR benchmark designed to leverage an extensive collection of unstructured data from multiple robotic platforms, spanning time intervals from days to years. The dataset encompasses diverse trajectories, arbitrary overlap and diverse seafloor types captured under varying environmental conditions, including differences in depth, lighting, and turbidity. Our code is available at: https://github.com/bev-gorry/underloc
- Abstract(参考訳): 水中生態系の効果的なモニタリングは、環境変化の追跡、保全活動の指導、長期生態系の健全性確保に不可欠である。
しかし、水中の生態系管理をロボットプラットフォームで自動化することは、従来の視覚的位置決め手法に重大な困難をもたらす水中画像の複雑さのため、依然として困難である。
本稿では,視覚的位置認識(VPR),特徴マッチング,画像分割を組み合わせた統合パイプラインを提案する。
本手法は,再検討領域のロバスト同定,剛性変換の推定,生態系変化の下流解析を可能にする。
さらに、SQUIDLE+ VPRベンチマーク(SQUIDLE+ VPRベンチマーク)は、複数のロボットプラットフォームからの非構造化データの広範囲な収集を活用するために設計された、最初の大規模水中VPRベンチマークである。
このデータセットは、深度、照明、濁度の違いを含む様々な環境条件下で捕獲された様々な軌道、任意の重なり合い、多様な海底タイプを含んでいる。
私たちのコードは、https://github.com/bev-gorry/underlocで利用可能です。
関連論文リスト
- Learning Underwater Active Perception in Simulation [51.205673783866146]
タービディティは、検査された構造物の正確な視覚的記録を阻止する可能性があるため、ミッション全体を危険に晒す可能性がある。
従来の研究は、濁度や後方散乱に適応する手法を導入してきた。
本研究では, 広範囲の水環境下での高品質な画像取得を実現するための, 単純かつ効率的なアプローチを提案する。
論文 参考訳(メタデータ) (2025-04-23T06:48:38Z) - Real-time Seafloor Segmentation and Mapping [0.0]
ポシドニア・オーシャンカ・メドウ(Posidonia Oceanica meadows)は、サバイバルと保全のために岩に大きく依存する海草の一種である。
ディープラーニングベースのセマンティックセグメンテーションと視覚自動監視システムは、さまざまなアプリケーションで有望であることを示している。
本稿では,自律型水中車両(AUV)がポシドニア大洋の牧草地の境界を自律的に調査できるようにするために,機械学習とコンピュータビジョン技術を組み合わせたフレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-14T22:49:08Z) - Inland Waterway Object Detection in Multi-environment: Dataset and Approach [12.00732943849236]
本稿では,多環境インランド・ウォーターウェイ・ベッセル・データセット(MEIWVD)を紹介する。
MEIWVDは、晴れ、雨、霧、人工照明など様々なシナリオから32,478枚の高品質な画像で構成されている。
本稿では,環境条件に応じた水面画像改善のためのシーン誘導画像強調モジュールを提案する。
論文 参考訳(メタデータ) (2025-04-07T08:45:00Z) - AquaticCLIP: A Vision-Language Foundation Model for Underwater Scene Analysis [40.27548815196493]
AquaticCLIP(AquaticCLIP)は、水文シーン理解に適した、新しいコントラスト言語画像事前学習モデルである。
AquaticCLIPは、画像とテキストを水生環境で整列させる、教師なしの新たな学習フレームワークを提供する。
我々のモデルは水中環境における視覚言語アプリケーションのための新しいベンチマークを設定している。
論文 参考訳(メタデータ) (2025-02-03T19:56:16Z) - UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images [63.32490897641344]
ニューラルSDFに基づく多視点水中画像から対象物を再構成するフレームワークを提案する。
再建過程を最適化するためのハイブリッドな幾何学的先行手法を導入し、神経SDF再建の質と効率を著しく向上させる。
論文 参考訳(メタデータ) (2024-10-10T16:33:56Z) - On Vision Transformers for Classification Tasks in Side-Scan Sonar Imagery [0.0]
サイドスキャンソナー (SSS) 画像は海底の人工物体の分類においてユニークな課題を呈している。
本稿では、SSS画像のバイナリ分類タスクによく使用されるCNNアーキテクチャとともに、VTモデルの性能を厳格に比較する。
ViTベースのモデルは、f1スコア、精度、リコール、精度の指標で優れた分類性能を示す。
論文 参考訳(メタデータ) (2024-09-18T14:36:50Z) - ODYSSEE: Oyster Detection Yielded by Sensor Systems on Edge Electronics [14.935296890629795]
オイスターは沿岸生態系において重要なキーストーンであり、経済的、環境的、文化的な利益をもたらす。
現在の監視戦略は、しばしば破壊的な方法に依存している。
本研究では, 安定拡散を用いた新しいパイプラインを提案し, 現実的な合成データを用いて収集した実データセットを増強する。
論文 参考訳(メタデータ) (2024-09-11T04:31:09Z) - Diving into Underwater: Segment Anything Model Guided Underwater Salient Instance Segmentation and A Large-scale Dataset [60.14089302022989]
水中視覚タスクは複雑な水中状況のため、しばしばセグメンテーションの精度が低い。
第1次大規模水中塩分分節データセット(USIS10K)を構築した。
本研究では,水中ドメインに特化してセグメンツ・ア・シング・モデル(USIS-SAM)に基づく水中塩分・インスタンス・アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-06-10T06:17:33Z) - Automatic Coral Detection with YOLO: A Deep Learning Approach for Efficient and Accurate Coral Reef Monitoring [0.0]
サンゴ礁は、人為的な影響や気候変動によって脅威にさらされている重要な生態系である。
本稿では,深層学習モデルを用いたサンゴ自動検出システムを提案する。
論文 参考訳(メタデータ) (2024-04-03T08:00:46Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
本稿では、検出器フレンドリーな画像から、転送可能な事前知識を求める。
これは、検出器フレンドリー(DFUI)と水中画像の高度に劣化した領域が、特徴分布のギャップがあることを統計的に観察したものである。
高速かつパラメータの少ない本手法は変圧器型検出器よりも優れた性能を保っている。
論文 参考訳(メタデータ) (2023-08-24T12:32:46Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
トレーニングフェーズ中に手動アノテーションを不要にする自己教師型ディープラーニングモデルであるDeepAquaを提案する。
我々は、光とレーダーをベースとしたウォーターマスクが一致する場合を利用して、水面と植物の両方を検知する。
実験の結果,DeepAquaの精度は7%向上し,Intersection Over Unionが27%,F1が14%向上した。
論文 参考訳(メタデータ) (2023-05-02T18:06:21Z) - FLSea: Underwater Visual-Inertial and Stereo-Vision Forward-Looking
Datasets [8.830479021890575]
我々は,地中海と紅海の前方視像と視界慣性画像集合を収集した。
これらのデータセットは、障害物回避、視覚計測、3Dトラッキング、3Dローカライゼーションとマッピング(SLAM)、深さ推定など、いくつかの水中アプリケーションの開発に欠かせない。
論文 参考訳(メタデータ) (2023-02-24T17:39:53Z) - OmniSLAM: Omnidirectional Localization and Dense Mapping for
Wide-baseline Multi-camera Systems [88.41004332322788]
超広視野魚眼カメラ(FOV)を用いた広視野多視点ステレオ構成のための全方向位置決めと高密度マッピングシステムを提案する。
より実用的で正確な再構築のために、全方向深度推定のための改良された軽量のディープニューラルネットワークを導入する。
我々は全方位深度推定をビジュアル・オドメトリー(VO)に統合し,大域的整合性のためのループ閉鎖モジュールを付加する。
論文 参考訳(メタデータ) (2020-03-18T05:52:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。