Anomaly-Aware Semantic Segmentation by Leveraging Synthetic-Unknown Data
- URL: http://arxiv.org/abs/2111.14343v1
- Date: Mon, 29 Nov 2021 06:24:50 GMT
- Title: Anomaly-Aware Semantic Segmentation by Leveraging Synthetic-Unknown Data
- Authors: Guan-Rong Lu, Yueh-Cheng Liu, Tung-I Chen, Hung-Ting Su, Tsung-Han Wu,
Winston H. Hsu
- Abstract summary: Anomaly awareness is essential for safety-critical applications such as autonomous driving.
We propose a novel Synthetic-Unknown Data Generation to tackle the anomaly-aware semantic segmentation task.
We reach the state-of-the-art performance on two anomaly segmentation datasets.
- Score: 19.80173687261055
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Anomaly awareness is an essential capability for safety-critical applications
such as autonomous driving. While recent progress of robotics and computer
vision has enabled anomaly detection for image classification, anomaly
detection on semantic segmentation is less explored. Conventional anomaly-aware
systems assuming other existing classes as out-of-distribution (pseudo-unknown)
classes for training a model will result in two drawbacks. (1) Unknown classes,
which applications need to cope with, might not actually exist during training
time. (2) Model performance would strongly rely on the class selection.
Observing this, we propose a novel Synthetic-Unknown Data Generation, intending
to tackle the anomaly-aware semantic segmentation task. We design a new Masked
Gradient Update (MGU) module to generate auxiliary data along the boundary of
in-distribution data points. In addition, we modify the traditional
cross-entropy loss to emphasize the border data points. We reach the
state-of-the-art performance on two anomaly segmentation datasets. Ablation
studies also demonstrate the effectiveness of proposed modules.
Related papers
- Prior2Former -- Evidential Modeling of Mask Transformers for Assumption-Free Open-World Panoptic Segmentation [74.55677741919035]
We propose Prior2Former (P2F) as the first approach for segmentation vision transformers rooted in evidential learning.
P2F extends the mask vision transformer architecture by incorporating a Beta prior for computing model uncertainty in pixel-wise binary mask assignments.
It achieves the highest ranking in the OoDIS anomaly instance benchmark among methods not using OOD data in any way.
arXiv Detail & Related papers (2025-04-07T08:53:14Z) - A Dataset for Semantic Segmentation in the Presence of Unknowns [49.795683850385956]
Existing datasets allow evaluation of only knowns or unknowns - but not both.
We propose a novel anomaly segmentation dataset, ISSU, that features a diverse set of anomaly inputs from cluttered real-world environments.
The dataset is twice larger than existing anomaly segmentation datasets.
arXiv Detail & Related papers (2025-03-28T10:31:01Z) - CSTA: Spatial-Temporal Causal Adaptive Learning for Exemplar-Free Video Class-Incremental Learning [62.69917996026769]
A class-incremental learning task requires learning and preserving both spatial appearance and temporal action involvement.
We propose a framework that equips separate adapters to learn new class patterns, accommodating the incremental information requirements unique to each class.
A causal compensation mechanism is proposed to reduce the conflicts during increment and memorization for between different types of information.
arXiv Detail & Related papers (2025-01-13T11:34:55Z) - GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralAD is an anomaly detection framework designed to operate in semantic, near-distribution, and industrial settings.
We propose a novel self-supervised anomaly generation module that employs straightforward operations like noise addition and shuffling to patch features.
We extensively evaluated our approach on ten datasets, achieving state-of-the-art results in six and on-par performance in the remaining.
arXiv Detail & Related papers (2024-07-17T09:27:41Z) - Toward Multi-class Anomaly Detection: Exploring Class-aware Unified Model against Inter-class Interference [67.36605226797887]
We introduce a Multi-class Implicit Neural representation Transformer for unified Anomaly Detection (MINT-AD)
By learning the multi-class distributions, the model generates class-aware query embeddings for the transformer decoder.
MINT-AD can project category and position information into a feature embedding space, further supervised by classification and prior probability loss functions.
arXiv Detail & Related papers (2024-03-21T08:08:31Z) - Video Anomaly Detection using GAN [0.0]
This thesis study aims to offer the solution for this use case so that human resources won't be required to keep an eye out for any unusual activity in the surveillance system records.
We have developed a novel generative adversarial network (GAN) based anomaly detection model.
arXiv Detail & Related papers (2023-11-23T16:41:30Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - Unsupervised Continual Semantic Adaptation through Neural Rendering [32.099350613956716]
We study continual multi-scene adaptation for the task of semantic segmentation.
We propose training a Semantic-NeRF network for each scene by fusing the predictions of a segmentation model.
We evaluate our approach on ScanNet, where we outperform both a voxel-based baseline and a state-of-the-art unsupervised domain adaptation method.
arXiv Detail & Related papers (2022-11-25T09:31:41Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Y-GAN: Learning Dual Data Representations for Efficient Anomaly
Detection [0.0]
We propose a novel reconstruction-based model for anomaly detection, called Y-GAN.
The model consists of a Y-shaped auto-encoder and represents images in two separate latent spaces.
arXiv Detail & Related papers (2021-09-28T20:17:04Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Dual Adversarial Auto-Encoders for Clustering [152.84443014554745]
We propose Dual Adversarial Auto-encoder (Dual-AAE) for unsupervised clustering.
By performing variational inference on the objective function of Dual-AAE, we derive a new reconstruction loss which can be optimized by training a pair of Auto-encoders.
Experiments on four benchmarks show that Dual-AAE achieves superior performance over state-of-the-art clustering methods.
arXiv Detail & Related papers (2020-08-23T13:16:34Z) - Anomaly Detection by One Class Latent Regularized Networks [36.67420338535258]
Semi-supervised Generative Adversarial Networks (GAN)-based methods have been gaining popularity in anomaly detection task recently.
A novel adversarial dual autoencoder network is proposed, in which the underlying structure of training data is captured in latent feature space.
Experiments show that our model achieves the state-of-the-art results on MNIST and CIFAR10 datasets as well as GTSRB stop signs dataset.
arXiv Detail & Related papers (2020-02-05T02:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.