論文の概要: Pessimistic Model Selection for Offline Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2111.14346v1
- Date: Mon, 29 Nov 2021 06:29:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-01 03:30:15.930063
- Title: Pessimistic Model Selection for Offline Deep Reinforcement Learning
- Title(参考訳): オフライン深部強化学習のための悲観的モデル選択
- Authors: Chao-Han Huck Yang, Zhengling Qi, Yifan Cui, Pin-Yu Chen
- Abstract要約: 深層強化学習(DRL)は多くのアプリケーションにおいてシーケンシャルな意思決定問題を解決する大きな可能性を示している。
主要な障壁の1つは、DRLが学んだ政策の一般化性の低下につながる過度に適合する問題である。
理論的保証のあるオフラインDRLに対する悲観的モデル選択(PMS)手法を提案する。
- 参考スコア(独自算出の注目度): 56.282483586473816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Reinforcement Learning (DRL) has demonstrated great potentials in
solving sequential decision making problems in many applications. Despite its
promising performance, practical gaps exist when deploying DRL in real-world
scenarios. One main barrier is the over-fitting issue that leads to poor
generalizability of the policy learned by DRL. In particular, for offline DRL
with observational data, model selection is a challenging task as there is no
ground truth available for performance demonstration, in contrast with the
online setting with simulated environments. In this work, we propose a
pessimistic model selection (PMS) approach for offline DRL with a theoretical
guarantee, which features a provably effective framework for finding the best
policy among a set of candidate models. Two refined approaches are also
proposed to address the potential bias of DRL model in identifying the optimal
policy. Numerical studies demonstrated the superior performance of our approach
over existing methods.
- Abstract(参考訳): 深層強化学習(DRL)は多くのアプリケーションにおいてシーケンシャルな意思決定問題を解決する大きな可能性を示している。
有望なパフォーマンスにもかかわらず、実際のシナリオでDRLをデプロイする際には、現実的なギャップが存在する。
主要な障壁の1つは、DRLが学んだ政策の一般化性の低下につながる過度な問題である。
特に、観測データを持つオフラインDRLでは、シミュレーション環境によるオンライン設定とは対照的に、性能実証に利用できる基礎的な真実が存在しないため、モデル選択は難しい課題である。
本研究では,オフラインDRLに対する悲観的モデル選択(PMS)アプローチを理論的保証付きで提案する。
また、最適ポリシーを特定する際にDRLモデルの潜在的なバイアスに対処する2つの改良されたアプローチも提案されている。
数値解析により,既存手法よりも優れた性能を示した。
関連論文リスト
- SeMOPO: Learning High-quality Model and Policy from Low-quality Offline Visual Datasets [32.496818080222646]
モデルに基づくオフライン強化学習のための新しい手法を提案する。
モデルの不確かさとSeMOPOの性能バウンダリに関する理論的保証を提供する。
実験結果から,本手法はベースライン法を著しく上回ることがわかった。
論文 参考訳(メタデータ) (2024-06-13T15:16:38Z) - Bridging Distributionally Robust Learning and Offline RL: An Approach to
Mitigate Distribution Shift and Partial Data Coverage [32.578787778183546]
オフライン強化学習(RL)アルゴリズムは、過去の(オフライン)データを用いて最適な警察を学習する。
オフラインRLの主な課題の1つは、分散シフトである。
分散ロバスト学習(DRL)フレームワークを用いた2つのオフラインRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-27T19:19:30Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - Deploying Offline Reinforcement Learning with Human Feedback [34.11507483049087]
強化学習は、現実世界のアプリケーションで意思決定タスクを約束している。
1つの実践的なフレームワークは、オフラインデータセットからパラメータ化されたポリシーモデルをトレーニングし、それらをオンライン環境にデプロイすることである。
このアプローチは、オフライントレーニングが完璧でない可能性があるため、危険なアクションを取る可能性のあるRLモデルのパフォーマンスが低下する可能性があるため、リスクが伴う可能性がある。
我々は、人間がRLモデルを監督し、オンラインデプロイメントフェーズで追加のフィードバックを提供する代替フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-13T12:13:16Z) - Online Policy Optimization for Robust MDP [17.995448897675068]
強化学習(Reinforcement Learning, RL)は、ビデオゲームやGoなど多くの合成環境において、人間のパフォーマンスを上回っている。
本研究では、未知の名義システムと対話することで、オンラインロバストなマルコフ決定プロセス(MDP)を検討する。
提案手法は,確率的に効率的であるロバストな楽観的ポリシー最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-28T05:18:20Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
適応行動優先型オフラインモデルに基づくRL(Adaptive Behavioral Priors:MABE)を導入する。
MABEは、ドメイン内の一般化をサポートする動的モデルと、ドメイン間の一般化をサポートする振る舞いの事前が相補的であることの発見に基づいている。
クロスドメインの一般化を必要とする実験では、MABEが先行手法より優れていることが判明した。
論文 参考訳(メタデータ) (2021-06-16T20:48:49Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
オフライン強化学習(RL)とは、環境相互作用の静的データセットからポリシーを学習する問題を指します。
オフラインRLのためのモデルベースアルゴリズムの最近の進歩の上に構築し、それらを高次元の視覚観測空間に拡張する。
提案手法は, 実測可能であり, 未知のPOMDPにおけるELBOの下限の最大化に対応している。
論文 参考訳(メタデータ) (2020-12-21T18:28:17Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
オフライン強化学習(英語: offline reinforcement learning, RL)とは、以前に収集された大量のデータから完全に学習ポリシーを学習する問題を指す。
既存のモデルベースRLアルゴリズムは,すでにオフライン設定において大きな利益を上げていることを示す。
本稿では,既存のモデルに基づくRL法を,力学の不確実性によって人為的に罰せられる報酬で適用することを提案する。
論文 参考訳(メタデータ) (2020-05-27T08:46:41Z) - MOReL : Model-Based Offline Reinforcement Learning [49.30091375141527]
オフライン強化学習(RL)では、環境との歴史的相互作用のデータセットのみに基づく高報酬政策を学習することが目的である。
モデルベースオフラインRLのためのアルゴリズムフレームワークMOReLを提案する。
オフラインRLベンチマークにおいてMOReLが最先端の結果と一致するか,あるいは超えるかを示す。
論文 参考訳(メタデータ) (2020-05-12T17:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。