論文の概要: Multi-UAV Conflict Resolution with Graph Convolutional Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2111.14598v1
- Date: Mon, 29 Nov 2021 15:29:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-30 22:13:04.808983
- Title: Multi-UAV Conflict Resolution with Graph Convolutional Reinforcement
Learning
- Title(参考訳): グラフ畳み込み強化学習によるマルチUAV競合解消
- Authors: Ralvi Isufaj, Marsel Omeri, Miquel Angel Piera
- Abstract要約: 無人航空機(UAV)間の飛行安全性は、ペア分離ミニマによって確保される。
交通密度の上昇が予想されるため、2つ以上のUAVが遭遇する可能性がある。
我々は、マルチエージェント強化学習問題として、マルチUAVコンフリクト解決をモデル化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Safety is the primary concern when it comes to air traffic. In-flight safety
between Unmanned Aircraft Vehicles (UAVs) is ensured through pairwise
separation minima, utilizing conflict detection and resolution methods.
Existing methods mainly deal with pairwise conflicts, however due to an
expected increase in traffic density, encounters with more than two UAVs are
likely to happen. In this paper, we model multi-UAV conflict resolution as a
multi-agent reinforcement learning problem. We implement an algorithm based on
graph neural networks where cooperative agents can communicate to jointly
generate resolution maneuvers. The model is evaluated in scenarios with 3 and 4
present agents. Results show that agents are able to successfully solve the
multi-UAV conflicts through a cooperative strategy.
- Abstract(参考訳): 航空交通に関しては安全が主な関心事である。
無人航空機(UAV)間の飛行中の安全性は、衝突検出と分解法を利用して、ペア分離ミニマによって確保される。
既存の手法は主に対の衝突に対処するが、交通密度の増加が予想されるため、2つ以上のUAVとの遭遇が起こる可能性が高い。
本稿では,マルチエージェント強化学習問題として,マルチUAVコンフリクト解決をモデル化する。
協調エージェントが協調して解決操作を生成できるグラフニューラルネットワークに基づくアルゴリズムを実装した。
モデルは3と4のエージェントによるシナリオで評価される。
その結果、エージェントは協調戦略によってマルチuav紛争をうまく解決できることがわかった。
関連論文リスト
- Autonomous Decision Making for UAV Cooperative Pursuit-Evasion Game with Reinforcement Learning [50.33447711072726]
本稿では,マルチロールUAV協調追従ゲームにおける意思決定のための深層強化学習モデルを提案する。
提案手法は,追従回避ゲームシナリオにおけるUAVの自律的意思決定を可能にする。
論文 参考訳(メタデータ) (2024-11-05T10:45:30Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Graph Attention-based Reinforcement Learning for Trajectory Design and
Resource Assignment in Multi-UAV Assisted Communication [20.79743323142469]
UAV基地局(UAV BS)が未知の環境で軌道設計と資源割り当てを実現することは困難である。
通信ネットワークにおけるUAV BS間の協調と競合はマルコフゲーム問題に繋がる。
本稿では,マルチUAV支援通信問題を解決するために,新しいグラフアテンション型マルチエージェント信頼領域(GA-MATR)強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-31T14:37:06Z) - MADRL-based UAVs Trajectory Design with Anti-Collision Mechanism in
Vehicular Networks [1.9662978733004604]
今後6Gネットワークでは、無人航空機(UAV)が移動基地局として機能することが期待される。
最も困難な問題の1つは、複数のUAVのための軌道の設計であり、同じ領域に協調して機能する。
本稿では,これらの問題に対処するためのランクベースのバイナリマスキング手法を提案する。
論文 参考訳(メタデータ) (2024-01-21T20:08:32Z) - Toward collision-free trajectory for autonomous and pilot-controlled
unmanned aerial vehicles [1.018017727755629]
本研究は、高度衝突管理手法の開発において、PilotAware Ltdが入手した電子情報(EC)をより活用するものである。
DACM手法の利点は、空中衝突を避けるための広範囲なシミュレーションと実世界のフィールドテストによって実証されてきた。
論文 参考訳(メタデータ) (2023-09-18T18:24:31Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
本稿では,無人航空機(MUAV)搭載のIoT(Internet of Things)ネットワークについて検討する。
本稿では、インテリジェント反射面(IRS)を備えた充電可能な補助UAV(AUAV)を用いて、MUAVからの通信信号を強化することを提案する。
提案モデルでは,IoTネットワークの蓄積スループットを最大化するために,これらのエネルギー制限されたUAVの最適協調戦略について検討する。
論文 参考訳(メタデータ) (2021-12-20T15:45:28Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - Attention-based Reinforcement Learning for Real-Time UAV Semantic
Communication [53.46235596543596]
移動地利用者に対する空対地超信頼性・低遅延通信(URLLC)の問題点について検討する。
グラフアテンション交換ネットワーク(GAXNet)を用いたマルチエージェント深層強化学習フレームワークを提案する。
GAXNetは、最先端のベースラインフレームワークと比較して、0.0000001エラー率で6.5倍のレイテンシを実現している。
論文 参考訳(メタデータ) (2021-05-22T12:43:25Z) - Jamming-Resilient Path Planning for Multiple UAVs via Deep Reinforcement
Learning [1.2330326247154968]
無人航空機(UAV)は無線ネットワークの不可欠な部分であると期待されている。
本論文では,複数のセルコネクテッドUAVの衝突のない経路を探索する。
本稿では,オンライン信号対干渉+雑音比マッピングを用いたオフライン時間差学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-09T16:52:33Z) - Distributed Reinforcement Learning for Flexible and Efficient UAV Swarm
Control [28.463670610865837]
本稿では,大規模群に拡大する分散強化学習(RL)手法を提案する。
本実験では, 本手法がコミュニケーションチャネル障害に強い効果的な戦略を導出できることを示した。
また,本手法は計算集約的なルックアヘッドに比べて優れた性能を実現することを示す。
論文 参考訳(メタデータ) (2021-03-08T11:06:28Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
UAV間でタスクを分散するための経済取引に触発された新しい強化学習アルゴリズムであるREPlannerを紹介します。
エージェントが協力し、リソースを競うことができるマルチエージェント経済ゲームとして、パス計画問題を策定します。
UAV協力によるタスク分布の計算を行うため、Swarmサイズの変化に対して非常に耐性が高い。
論文 参考訳(メタデータ) (2021-03-03T20:54:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。