論文の概要: An Overview of Healthcare Data Analytics With Applications to the
COVID-19 Pandemic
- arxiv url: http://arxiv.org/abs/2111.14623v1
- Date: Thu, 25 Nov 2021 06:37:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-30 19:01:16.702375
- Title: An Overview of Healthcare Data Analytics With Applications to the
COVID-19 Pandemic
- Title(参考訳): 医療データ分析の現状と新型コロナウイルスパンデミックへの応用
- Authors: Zhe Fei, Yevgen Ryeznik, Oleksandr Sverdlov, Chee Wei Tan and Weng Kee
Wong
- Abstract要約: 本稿では,医療の一般的な問題に対して,革新的な分析手法,機械学習ツール,メタヒューリスティックがどう対処できるかを説明する。
特に、現代のデジタル技術、統計手法、データプラットフォーム、データ統合システムの応用について述べる。
ビッグデータの分析と解釈は、複数の学際的な努力を必要とする非常に難しい作業である、と我々は主張する。
- 参考スコア(独自算出の注目度): 20.912943922420407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of big data, standard analysis tools may be inadequate for making
inference and there is a growing need for more efficient and innovative ways to
collect, process, analyze and interpret the massive and complex data. We
provide an overview of challenges in big data problems and describe how
innovative analytical methods, machine learning tools and metaheuristics can
tackle general healthcare problems with a focus on the current pandemic. In
particular, we give applications of modern digital technology, statistical
methods, data platforms and data integration systems to improve diagnosis and
treatment of diseases in clinical research and novel epidemiologic tools to
tackle infection source problems, such as finding Patient Zero in the spread of
epidemics. We make the case that analyzing and interpreting big data is a very
challenging task that requires a multi-disciplinary effort to continuously
create more effective methodologies and powerful tools to transfer data
information into knowledge that enables informed decision making.
- Abstract(参考訳): ビッグデータの時代において、標準分析ツールは推論に不適であり、大規模で複雑なデータを収集、処理、分析、解釈するためのより効率的で革新的な方法の必要性が高まっている。
ビッグデータ問題における課題を概観し、現在のパンデミックに焦点をあてて、革新的な分析手法、機械学習ツール、メタヒューリスティックスがどのようにして一般的な医療問題に対処できるかを説明する。
特に,最新のデジタル技術,統計手法,データプラットフォーム,データ統合システムの応用により,臨床研究における疾患の診断と治療を改善するとともに,感染症の流行拡大における患者ゼロの発見など,感染症源問題に取り組むための新たな疫学ツールを提供する。
ビッグデータの分析と解釈は、より効果的な方法論と、インフォームド意思決定を可能にする知識にデータ情報を転送するための強力なツールを継続的に作成するために、多分野の努力を必要とする非常に困難なタスクである。
関連論文リスト
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
精神病は、社会的、個人的コストがかなり高い広範囲で不安定な状態である。
近年の人工知能(AI)の進歩は、うつ病、不安障害、双極性障害、統合失調症、外傷後ストレス障害などの病態を認識し、対処するための大きな可能性を秘めている。
データセットやトレーニング済みモデルからの機密データ漏洩のリスクを含むプライバシー上の懸念は、これらのAIシステムを実際の臨床環境にデプロイする上で、依然として重要な障壁である。
論文 参考訳(メタデータ) (2025-02-01T15:10:02Z) - Deep Learning, Machine Learning, Advancing Big Data Analytics and Management [26.911181864764117]
人工知能、機械学習、ディープラーニングの進歩は、ビッグデータ分析と管理の変革を触媒している。
本研究は,これらの技術の理論的基礎,方法論的進歩,実践的実装について考察する。
研究者、実践家、データ愛好家は、現代のデータ分析の複雑さをナビゲートするツールを利用できる。
論文 参考訳(メタデータ) (2024-12-03T05:59:34Z) - A Survey of Deep Learning-based Radiology Report Generation Using Multimodal Data [41.8344712915454]
自動放射線診断レポート生成は、医師の作業負荷を軽減し、医療資源の地域格差を最小限にすることができる。
マルチモーダル入力データから情報を得るためには、医師を模倣する計算モデルが必要であるため、これは難しい課題である。
近年, トランスフォーマー, コントラスト学習, 知識ベース構築など, 深層学習に基づく手法を用いてこの問題に対処する研究が進められている。
本調査では,最新の研究で開発された重要な手法を要約し,ディープラーニングに基づくレポート生成のための一般的なワークフローを提案する。
論文 参考訳(メタデータ) (2024-05-21T14:37:35Z) - A Survey of Few-Shot Learning for Biomedical Time Series [3.845248204742053]
データ駆動型モデルは、臨床診断を支援し、患者のケアを改善する大きな可能性を秘めている。
ラベル付きデータの不足を克服する新たなアプローチは、人間のような能力でAIメソッドを拡張して、少数ショット学習と呼ばれる限られた例で新しいタスクを学ぶことだ。
本調査は,生物医学的時系列アプリケーションのための数ショット学習手法の総合的なレビューと比較を行う。
論文 参考訳(メタデータ) (2024-05-03T21:22:27Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Multimodal Learning for Multi-Omics: A Survey [4.15790071124993]
統合的マルチオミクス分析のためのマルチモーダル学習は、研究者や実践者が人間の病気に対する深い洞察を得るのに役立つ。
しかし、簡単にアクセスできるオープンソースツールなど、この分野の開発を妨げる課題がいくつかある。
この調査は、いくつかの新しい視点から、データの課題、融合アプローチ、データセット、ソフトウェアツールの最新の概要を提供することを目的としている。
論文 参考訳(メタデータ) (2022-11-29T12:08:06Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
この調査は、様々なデータ駆動の方法論および実践的進歩を掘り下げるものである。
疫学的なデータセットと,流行予測に関連する新しいデータストリームを列挙する。
また,これらの予測システムの現実的な展開において生じる経験や課題についても論じる。
論文 参考訳(メタデータ) (2022-07-19T16:15:11Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z) - Digital Epidemiology: A review [0.0]
疫学は近年、計算モデルに基づく大きな進歩を目撃している。
ビッグデータとアプリによって、大規模な実データによるモデルの検証と精錬が可能になる。
エボラは、システム解を必要とするため、複雑性のレンズからアプローチする必要がある。
論文 参考訳(メタデータ) (2021-04-08T08:45:20Z) - A Deep Learning Pipeline for Patient Diagnosis Prediction Using
Electronic Health Records [0.5672132510411464]
我々は、公衆衛生データセットを普遍的なフォーマットに容易に変換するPythonパッケージを開発し、公開する。
複数の診断を同時に予測する2つの新しいモデルアーキテクチャを提案する。
どちらのモデルも高い精度で複数の診断を同時に予測できる。
論文 参考訳(メタデータ) (2020-06-23T14:58:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。