論文の概要: On computable learning of continuous features
- arxiv url: http://arxiv.org/abs/2111.14630v1
- Date: Wed, 24 Nov 2021 02:28:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-06 01:03:03.006135
- Title: On computable learning of continuous features
- Title(参考訳): 連続特徴の計算可能学習について
- Authors: Nathanael Ackerman and Julian Asilis and Jieqi Di and Cameron Freer
and Jean-Baptiste Tristan
- Abstract要約: 計算可能距離空間上の二項分類のための計算可能PAC学習の定義を導入する。
また、計算可能なサンプル関数を持つ適切なPAC学習者を認めない仮説クラスを提示する。
- 参考スコア(独自算出の注目度): 2.278415626131568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce definitions of computable PAC learning for binary classification
over computable metric spaces. We provide sufficient conditions for learners
that are empirical risk minimizers (ERM) to be computable, and bound the strong
Weihrauch degree of an ERM learner under more general conditions. We also give
a presentation of a hypothesis class that does not admit any proper computable
PAC learner with computable sample function, despite the underlying class being
PAC learnable.
- Abstract(参考訳): 計算可能距離空間上の二項分類のための計算可能PAC学習の定義を導入する。
経験的リスク最小化(erm)を計算可能とする学習者に対して十分な条件を提供し,より一般的な条件下でのerm学習者の強弱度を拘束する。
また、基礎となるクラスがpac学習可能であるにもかかわらず、計算可能なサンプル関数を持つ適切な計算可能なpac学習者を認めない仮説クラスを提示する。
関連論文リスト
- On the Computability of Robust PAC Learning [9.507869508188266]
本稿では,頑健な計算可能PAC(robust CPAC)学習の問題を紹介する。
このセットアップにおける学習性は,コンポーネントの組み合わせによってもたらされるものではない。
我々はその有限性は必要であるが、堅牢なCPAC学習には不十分であることを証明した。
論文 参考訳(メタデータ) (2024-06-14T16:20:04Z) - Collaborative Learning with Different Labeling Functions [7.228285747845779]
我々は、$n$のデータ分布ごとに正確な分類器を学習することを目的とした、協調型PAC学習の亜種について研究する。
データ分布がより弱い実現可能性の仮定を満たす場合、サンプル効率の学習は依然として可能であることを示す。
論文 参考訳(メタデータ) (2024-02-16T04:32:22Z) - When is Agnostic Reinforcement Learning Statistically Tractable? [76.1408672715773]
エンフスパンニング容量と呼ばれる新しい複雑性測度は、設定された$Pi$にのみ依存し、MDPダイナミクスとは独立である。
我々は、学習するためにスーパーポリノミカルな数のサンプルを必要とする制限付きスパンリング能力を持つポリシークラス$Pi$が存在することを示した。
これにより、生成的アクセスとオンラインアクセスモデルの間の学習可能性の驚くほどの分離が明らかになる。
論文 参考訳(メタデータ) (2023-10-09T19:40:54Z) - Optimal Learners for Realizable Regression: PAC Learning and Online Learning [52.37726841759983]
本研究では,PAC学習環境とオンライン学習環境の両方において,実現可能な回帰の統計的複雑さを特徴付けることを目的とする。
まず,再現可能な回帰のためのミニマックスインスタンス最適学習器を導入し,実数値予測器のどのクラスが学習可能であるかを質的かつ定量的に特徴付ける新しい次元を提案する。
オンライン学習の文脈では、最小の最適インスタンス最適累積損失を一定要素まで特徴付ける次元を提供し、再現可能な回帰のための最適オンライン学習者を設計する。
論文 参考訳(メタデータ) (2023-07-07T21:39:25Z) - Learning in POMDPs is Sample-Efficient with Hindsight Observability [36.66596305441365]
POMDPは、幅広い意思決定問題を捉えているが、難易度の結果は、学習が本質的に部分観測可能であるため、単純な設定でも難易度が高いことを示唆している。
多くの現実的な問題では、より多くの情報が明らかにされるか、学習プロセスのどこかの時点で計算できる。
我々は、学習者が学習中にのみ潜伏状態を明らかにするPOMDPとして設定(setshort)を定式化する。
論文 参考訳(メタデータ) (2023-01-31T18:54:36Z) - On Leave-One-Out Conditional Mutual Information For Generalization [122.2734338600665]
残余条件付き相互情報(loo-CMI)の新しい尺度に基づく教師付き学習アルゴリズムのための情報理論の一般化境界を導出する。
他のCMI境界とは対照的に、我々のloo-CMI境界は容易に計算でき、古典的なout-out-out-cross-validationのような他の概念と関連して解釈できる。
ディープラーニングのシナリオにおいて予測された一般化ギャップを評価することにより,境界の質を実証的に検証する。
論文 参考訳(メタデータ) (2022-07-01T17:58:29Z) - Measure Theoretic Approach to Nonuniform Learnability [16.467540842571328]
非一様学習性のキャラクタリゼーションは測定理論を用いて再定義されている。
このアプローチを実装するための新しいアルゴリズム、Generalize Measure Learnabilityフレームワークの導入。
GMLフレームワークを適用することが可能な、仮説クラスなど、多くの状況が提示された。
論文 参考訳(メタデータ) (2020-11-01T01:03:26Z) - Probably Approximately Correct Constrained Learning [135.48447120228658]
我々は、ほぼ正しい学習フレームワーク(PAC)に基づく一般化理論を開発する。
PAC学習可能なクラスも制約のある学習者であるという意味では,学習者の導入は学習問題を難しくするものではないことを示す。
このソリューションの特性を分析し,制約付き学習が公平でロバストな分類における問題にどのように対処できるかを説明する。
論文 参考訳(メタデータ) (2020-06-09T19:59:29Z) - Can We Learn Heuristics For Graphical Model Inference Using
Reinforcement Learning? [114.24881214319048]
我々は、強化学習を用いて、高次条件ランダム場(CRF)における推論を解くためのプログラム、すなわち、ポリシーを学習できることを示します。
本手法は,ポテンシャルの形式に制約を加えることなく,推論タスクを効率的に解く。
論文 参考訳(メタデータ) (2020-04-27T19:24:04Z) - A Theory of Usable Information Under Computational Constraints [103.5901638681034]
本稿では,複雑なシステムにおける情報推論のための新しいフレームワークを提案する。
我々の基礎はシャノンの情報理論の変分拡張に基づいている。
計算制約を組み込むことで,データから$mathcalV$-informationを確実に推定できることを示す。
論文 参考訳(メタデータ) (2020-02-25T06:09:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。