論文の概要: DAFormer: Improving Network Architectures and Training Strategies for
Domain-Adaptive Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2111.14887v1
- Date: Mon, 29 Nov 2021 19:00:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-01 15:14:19.872841
- Title: DAFormer: Improving Network Architectures and Training Strategies for
Domain-Adaptive Semantic Segmentation
- Title(参考訳): daformer: ドメイン適応意味セグメンテーションのためのネットワークアーキテクチャの改善とトレーニング戦略
- Authors: Lukas Hoyer, Dengxin Dai, Luc Van Gool
- Abstract要約: 教師なしドメイン適応(UDA)プロセスについて検討する。
ベンチマーク結果に基づいて,新しい UDA 手法である DAFormer を提案する。
DAFormerは,GTA->Cityscapesの10.8 mIoU,Synthia->Cityscapesの5.4 mIoUにより,最先端の性能を大幅に向上させる。
- 参考スコア(独自算出の注目度): 99.88539409432916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As acquiring pixel-wise annotations of real-world images for semantic
segmentation is a costly process, a model can instead be trained with more
accessible synthetic data and adapted to real images without requiring their
annotations. This process is studied in unsupervised domain adaptation (UDA).
Even though a large number of methods propose new adaptation strategies, they
are mostly based on outdated network architectures. As the influence of recent
network architectures has not been systematically studied, we first benchmark
different network architectures for UDA and then propose a novel UDA method,
DAFormer, based on the benchmark results. The DAFormer network consists of a
Transformer encoder and a multi-level context-aware feature fusion decoder. It
is enabled by three simple but crucial training strategies to stabilize the
training and to avoid overfitting DAFormer to the source domain: While the Rare
Class Sampling on the source domain improves the quality of pseudo-labels by
mitigating the confirmation bias of self-training towards common classes, the
Thing-Class ImageNet Feature Distance and a learning rate warmup promote
feature transfer from ImageNet pretraining. DAFormer significantly improves the
state-of-the-art performance by 10.8 mIoU for GTA->Cityscapes and 5.4 mIoU for
Synthia->Cityscapes and enables learning even difficult classes such as train,
bus, and truck well. The implementation is available at
https://github.com/lhoyer/DAFormer.
- Abstract(参考訳): セマンティックセグメンテーションのための実世界の画像のピクセル単位のアノテーションを取得することはコストのかかるプロセスであるため、モデルはよりアクセスしやすい合成データで訓練され、アノテーションを必要とせずに実際の画像に適応することができる。
このプロセスはunsupervised domain adaptation (UDA)で研究されている。
多くの手法が新しい適応戦略を提案するが、その多くは時代遅れのネットワークアーキテクチャに基づいている。
近年のネットワークアーキテクチャの影響は体系的に研究されていないため、まずUDAの異なるネットワークアーキテクチャをベンチマークし、そのベンチマーク結果に基づいて新しいUDA手法であるDAFormerを提案する。
DAFormerネットワークはTransformerエンコーダとマルチレベルコンテキスト認識機能融合デコーダで構成される。
ソースドメインでの希少なクラスサンプリングは、一般的なクラスに対する自己学習の確証バイアスを緩和することで、擬似ラベルの品質を改善するが、Thing-Class ImageNet Feature Distanceと学習率ウォームアップは、ImageNetプリトレーニングからのフィーチャー転送を促進する。
DAFormer は,GTA->Cityscapes の10.8 mIoU と Synthia->Cityscapes の5.4 mIoU を改良し,列車,バス,トラックなどの難易度も学べるようにした。
実装はhttps://github.com/lhoyer/daformerで利用可能である。
関連論文リスト
- Intra-task Mutual Attention based Vision Transformer for Few-Shot Learning [12.5354658533836]
人間は、ほんのわずかの例に晒された後に、新しい、目に見えない画像を正確に分類する能力を持っている。
人工ニューラルネットワークモデルでは、限られたサンプルを持つ2つのイメージを区別する最も関連性の高い特徴を決定することが課題である。
本稿では,サポートとクエリサンプルをパッチに分割するタスク内相互注意手法を提案する。
論文 参考訳(メタデータ) (2024-05-06T02:02:57Z) - Domain Adaptive and Generalizable Network Architectures and Training
Strategies for Semantic Image Segmentation [108.33885637197614]
教師なしドメイン適応(UDA)とドメイン一般化(DG)により、ソースドメインでトレーニングされた機械学習モデルは、ラベルなしまたは目に見えないターゲットドメインでうまく機能する。
UDA&DGのマルチレゾリューション・フレームワークであるHRDAを提案する。このフレームワークは、細かなセグメンテーションの詳細を保存するための小さな高分解能作物の強度と、学習されたスケールの注意を伴って長距離のコンテキスト依存を捕捉する大規模な低分解能作物の強度を組み合わせたものである。
論文 参考訳(メタデータ) (2023-04-26T15:18:45Z) - Novel transfer learning schemes based on Siamese networks and synthetic
data [6.883906273999368]
ディープネットワークに基づくトランスファーラーニングスキームは、コンピュータビジョンの最先端技術を提供する。
このようなアプリケーションは現在、適切なディープ・ネットワーク・モデルを簡単に利用できるアプリケーション・ドメインに限られている。
本稿では,最近導入されたTwin-VAEアーキテクチャを拡張したトランスファー学習手法を提案する。
論文 参考訳(メタデータ) (2022-11-21T09:48:21Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
2つの医用画像データセットのセマンティックセグメンテーションにパラメータ効率が良いが効果的な適応を実現するために,いくつかのコントリビューションを提案し,検討する。
我々はこのアーキテクチャを、オンライン生成プロトタイプへの割り当てに基づく専用密集型セルフスーパービジョンスキームで事前訓練する。
得られたニューラルネットワークモデルにより、完全に微調整されたモデルとパラメータに適応したモデルとのギャップを緩和できることを実証する。
論文 参考訳(メタデータ) (2022-11-16T21:55:05Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - ProCST: Boosting Semantic Segmentation using Progressive Cyclic
Style-Transfer [38.03127458140549]
ドメイン適応技術を改善するための新しい2段階フレームワークを提案する。
最初のステップでは、複数のスケールのニューラルネットワークを段階的にトレーニングし、ソースデータからターゲットデータへの初期転送を行う。
この新たなデータは、所望のターゲットドメインとのドメインギャップを減らし、適用されたUDAアプローチにより、さらにギャップを埋める。
論文 参考訳(メタデータ) (2022-04-25T18:01:05Z) - DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic
Segmentation [97.74059510314554]
セグメンテーションのための教師なしドメイン適応(UDA)は、ラベル付きソースドメインで訓練されたセグメンテーションモデルをラベル付きターゲットドメインに適応させることを目的としている。
既存の手法では、大きなドメインギャップに悩まされながら、ドメイン不変の特徴を学習しようとする。
本稿では,新しいDual Soft-Paste (DSP)法を提案する。
論文 参考訳(メタデータ) (2021-07-20T16:22:40Z) - PixMatch: Unsupervised Domain Adaptation via Pixelwise Consistency
Training [4.336877104987131]
教師なしドメイン適応はセマンティックセグメンテーションの有望なテクニックである。
対象領域整合性訓練の概念に基づく非監視領域適応のための新しいフレームワークを提案する。
私たちのアプローチはシンプルで、実装が簡単で、トレーニング時にメモリ効率が向上します。
論文 参考訳(メタデータ) (2021-05-17T19:36:28Z) - Cream of the Crop: Distilling Prioritized Paths For One-Shot Neural
Architecture Search [60.965024145243596]
ワンショット重み共有手法は、高効率と競争性能のため、最近、ニューラルアーキテクチャ探索において大きな注目を集めている。
この問題を軽減するため, 単純で効果的な蒸留法を提案する。
本稿では、訓練中に優れた性能を示すアーキテクチャ候補を指す優先順位付けパスの概念を紹介する。
優先順位付けされた経路は、その性能や複雑さに応じて、ハエで変化するため、最終的な経路は作物のクリームである。
論文 参考訳(メタデータ) (2020-10-29T17:55:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。