Rigorous data-driven computation of spectral properties of Koopman
operators for dynamical systems
- URL: http://arxiv.org/abs/2111.14889v2
- Date: Thu, 11 May 2023 08:02:26 GMT
- Title: Rigorous data-driven computation of spectral properties of Koopman
operators for dynamical systems
- Authors: Matthew J. Colbrook, Alex Townsend
- Abstract summary: This paper describes algorithms with rigorous convergence guarantees for computing spectral information of Koopman operators.
We compute smoothed approximations of spectral measures associated with general measure-preserving dynamical systems.
We demonstrate our algorithms on the tent map, circle rotations, Gauss iterated map, nonlinear pendulum, double pendulum, and Lorenz system.
- Score: 2.0305676256390934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Koopman operators are infinite-dimensional operators that globally linearize
nonlinear dynamical systems, making their spectral information valuable for
understanding dynamics. However, Koopman operators can have continuous spectra
and infinite-dimensional invariant subspaces, making computing their spectral
information a considerable challenge. This paper describes data-driven
algorithms with rigorous convergence guarantees for computing spectral
information of Koopman operators from trajectory data. We introduce residual
dynamic mode decomposition (ResDMD), which provides the first scheme for
computing the spectra and pseudospectra of general Koopman operators from
snapshot data without spectral pollution. Using the resolvent operator and
ResDMD, we compute smoothed approximations of spectral measures associated with
general measure-preserving dynamical systems. We prove explicit convergence
theorems for our algorithms, which can achieve high-order convergence even for
chaotic systems when computing the density of the continuous spectrum and the
discrete spectrum. Since our algorithms come with error control, ResDMD allows
aposteri verification of spectral quantities, Koopman mode decompositions, and
learned dictionaries. We demonstrate our algorithms on the tent map, circle
rotations, Gauss iterated map, nonlinear pendulum, double pendulum, and Lorenz
system. Finally, we provide kernelized variants of our algorithms for dynamical
systems with a high-dimensional state space. This allows us to compute the
spectral measure associated with the dynamics of a protein molecule with a
20,046-dimensional state space and compute nonlinear Koopman modes with error
bounds for turbulent flow past aerofoils with Reynolds number $>10^5$ that has
a 295,122-dimensional state space.
Related papers
- Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks [58.050130177241186]
Noise perturbations often corrupt 3-D point clouds, hindering downstream tasks such as surface reconstruction, rendering, and further processing.
This paper introduces finegranularity dynamic graph convolutional networks called GDGCN, a novel approach to denoising in 3-D point clouds.
arXiv Detail & Related papers (2024-11-21T14:19:32Z) - Multiplicative Dynamic Mode Decomposition [4.028503203417233]
We introduce Multiplicative Dynamic Mode Decomposition (MultDMD), which enforces the multiplicative structure inherent in the Koopman operator within its finite-dimensional approximation.
MultDMD presents a structured approach to finite-dimensional approximations and can accurately reflect the spectral properties of the Koopman operator.
We elaborate on the theoretical framework of MultDMD, detailing its formulation, optimization strategy, and convergence properties.
arXiv Detail & Related papers (2024-05-08T18:09:16Z) - Rigged Dynamic Mode Decomposition: Data-Driven Generalized Eigenfunction Decompositions for Koopman Operators [0.0]
We introduce the Rigged Dynamic Mode Decomposition (Rigged DMD) algorithm, which computes generalized eigenfunction decompositions of Koopman operators.
Rigged DMD addresses challenges with a data-driven methodology that approximates the Koopman operator's resolvent and its generalized eigenfunctions.
We provide examples, including systems with a Lebesgue spectrum, integrable Hamiltonian systems, the Lorenz system, and a high-Reynolds number lid-driven flow in a two-dimensional square cavity.
arXiv Detail & Related papers (2024-05-01T18:00:18Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
Extended Vision techniques often pose a challenge in their interpretation.
The huge dimensionality of data cube spectra poses a complex task in its statistical interpretation.
In this paper, we explore the possibility of applying unsupervised clustering methods in encoded space.
A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm.
arXiv Detail & Related papers (2024-01-31T09:31:28Z) - On the Convergence of Hermitian Dynamic Mode Decomposition [4.028503203417233]
We study the convergence of Hermitian Dynamic Mode Decomposition to the spectral properties of self-adjoint Koopman operators.
We numerically demonstrate our results by applying them to two-dimensional Schr"odinger equations.
arXiv Detail & Related papers (2024-01-06T11:13:16Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - The mpEDMD Algorithm for Data-Driven Computations of Measure-Preserving
Dynamical Systems [0.0]
We introduce measure-preserving extended dynamic mode decomposition ($textttmpEDMD$), the first truncation method whose eigendecomposition converges to the spectral quantities of Koopman operators.
$textttmpEDMD$ is flexible and easy to use with any pre-existing DMD-type method, and with different types of data.
arXiv Detail & Related papers (2022-09-06T06:37:54Z) - Residual Dynamic Mode Decomposition: Robust and verified Koopmanism [0.0]
Dynamic Mode Decomposition (DMD) describes complex dynamic processes through a hierarchy of simpler coherent features.
We present Residual Dynamic Mode Decomposition (ResDMD), which overcomes challenges through the data-driven computation of residuals associated with the full infinite-dimensional Koopman operator.
ResDMD computes spectra and pseudospectra of general Koopman operators with error control, and computes smoothed approximations of spectral measures (including continuous spectra) with explicit high-order convergence theorems.
arXiv Detail & Related papers (2022-05-19T18:02:44Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
The Koopman operator is a mathematical tool that allows for a linear description of non-linear systems.
In this paper we capture their core essence as a dual version of the same framework, incorporating them into the Kernel framework.
We establish a strong link between kernel methods and Koopman operators, leading to the estimation of the latter through Kernel functions.
arXiv Detail & Related papers (2021-03-25T11:08:26Z) - Spectral density estimation with the Gaussian Integral Transform [91.3755431537592]
spectral density operator $hatrho(omega)=delta(omega-hatH)$ plays a central role in linear response theory.
We describe a near optimal quantum algorithm providing an approximation to the spectral density.
arXiv Detail & Related papers (2020-04-10T03:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.