論文の概要: Deformable ProtoPNet: An Interpretable Image Classifier Using Deformable Prototypes
- arxiv url: http://arxiv.org/abs/2111.15000v3
- Date: Thu, 2 May 2024 20:21:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 18:35:59.344583
- Title: Deformable ProtoPNet: An Interpretable Image Classifier Using Deformable Prototypes
- Title(参考訳): Deformable ProtoPNet:Deformable Prototypesを用いた解釈可能な画像分類器
- Authors: Jon Donnelly, Alina Jade Barnett, Chaofan Chen,
- Abstract要約: 本稿では,Deformable Part Network(Deformable ProtoPNet)を提案する。
このモデルは、学習中に学習したプロトタイプと比較し、入力画像の分類を行い、「これのように見える」という形で説明を与える。
- 参考スコア(独自算出の注目度): 7.8515366468594765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a deformable prototypical part network (Deformable ProtoPNet), an interpretable image classifier that integrates the power of deep learning and the interpretability of case-based reasoning. This model classifies input images by comparing them with prototypes learned during training, yielding explanations in the form of "this looks like that." However, while previous methods use spatially rigid prototypes, we address this shortcoming by proposing spatially flexible prototypes. Each prototype is made up of several prototypical parts that adaptively change their relative spatial positions depending on the input image. Consequently, a Deformable ProtoPNet can explicitly capture pose variations and context, improving both model accuracy and the richness of explanations provided. Compared to other case-based interpretable models using prototypes, our approach achieves state-of-the-art accuracy and gives an explanation with greater context. The code is available at https://github.com/jdonnelly36/Deformable-ProtoPNet.
- Abstract(参考訳): 本稿では,Deformable ProtoPNet(Deformable ProtoPNet)という,ディープラーニングのパワーとケースベース推論の解釈可能性を統合した解釈可能な画像分類器を提案する。
このモデルは、訓練中に学習したプロトタイプと比較することで入力画像の分類を行い、「これに似ている」という形で説明を与える。
しかし、従来の手法では空間的に剛性のあるプロトタイプが用いられていたが、空間的に柔軟なプロトタイプを提案することでこの欠点に対処する。
各プロトタイプは、入力画像に応じて相対的な空間位置を適応的に変化させるいくつかの原型部品で構成されている。
その結果、Deformable ProtoPNetは、ポーズのバリエーションとコンテキストを明示的にキャプチャし、モデル精度と提供された説明の豊かさの両方を改善することができる。
プロトタイプを用いた他のケースベース解釈モデルと比較して,本手法は最先端の精度を実現し,よりコンテキストの高い説明を与える。
コードはhttps://github.com/jdonnelly36/Deformable-ProtoPNetで公開されている。
関連論文リスト
- Query-guided Prototype Evolution Network for Few-Shot Segmentation [85.75516116674771]
本稿では,前景と背景のプロトタイプの生成プロセスにクエリ機能を統合する新しい手法を提案する。
PASCAL-$5i$とミラーリング-$20i$データセットの実験結果は、QPENetが達成した実質的な拡張を示している。
論文 参考訳(メタデータ) (2024-03-11T07:50:40Z) - ProtoArgNet: Interpretable Image Classification with Super-Prototypes
and Argumentation [Technical Report] [19.35742377374265]
ProtoArgNetは、画像分類のための新しい解釈可能なディープニューラルネットワークである。
原型部分と単一原型クラス表現を結合した超原型を用いる。
画像内の異なる領域からの異なる原型部分間の空間的関係を認識することができる。
論文 参考訳(メタデータ) (2023-11-26T21:52:47Z) - This Looks Like Those: Illuminating Prototypical Concepts Using Multiple
Visualizations [19.724372592639774]
ProtoConceptsは,ディープラーニングとケースベース推論を組み合わせた画像分類手法である。
提案手法は,プロトタイプベースネットワークのアーキテクチャを改良し,複数のイメージパッチを用いて視覚化された概念を学習する。
実験の結果,この手法は,既存の画像分類網の広範な変更として適用可能であることがわかった。
論文 参考訳(メタデータ) (2023-10-28T04:54:48Z) - Rethinking Person Re-identification from a Projection-on-Prototypes
Perspective [84.24742313520811]
検索タスクとしてのPerson Re-IDentification(Re-ID)は,過去10年間で大きな発展を遂げてきた。
本稿では,新しいベースライン ProNet を提案する。
4つのベンチマークの実験では、提案したProNetは単純だが有効であり、以前のベースラインを大きく上回っている。
論文 参考訳(メタデータ) (2023-08-21T13:38:10Z) - Rethinking Semantic Segmentation: A Prototype View [126.59244185849838]
学習不可能なプロトタイプをベースとした非パラメトリックセマンティックセマンティックセマンティクスモデルを提案する。
我々のフレームワークは、いくつかのデータセットに対して魅力的な結果をもたらす。
この作業が、現在のデファクトセマンティックセグメンテーションモデル設計を再考することを期待しています。
論文 参考訳(メタデータ) (2022-03-28T21:15:32Z) - Interpretable Image Classification with Differentiable Prototypes
Assignment [7.660883761395447]
クラスが共有するプロトタイプのプールを備えた解釈可能な画像分類モデルであるProtoPoolを紹介する。
プロトタイプを特定のクラスに完全に微分可能な割り当てを導入することで得られる。
我々は,CUB-200-2011とStanford Carsのデータセットにおいて,ProtoPoolが最先端の精度を得ることを示す。
論文 参考訳(メタデータ) (2021-12-06T10:03:32Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
本稿では,FSSタスクに適合する2つの特徴的コントラスト学習手法を提案する。
第一の考え方は、プロトタイプの特徴空間におけるクラス内距離を減少させながら、クラス間距離を増やすことで、プロトタイプをより差別的にすることである。
提案手法は,PASCAL-5iおよびCOCO-20iデータセット上で,最先端のFSS手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-09T08:14:50Z) - This Looks Like That, Because ... Explaining Prototypes for
Interpretable Image Recognition [4.396860522241307]
プロトタイプを説明するべきだ、と私たちは主張する。
本手法は,色調,形状,テクスチャ,コントラスト,彩度の影響を定量化し,プロトタイプの意味を明らかにする。
このような「誤解を招く」プロトタイプを説明することで、プロトタイプベースの分類モデルの解釈可能性とシミュラビリティを向上させることができる。
論文 参考訳(メタデータ) (2020-11-05T14:43:07Z) - ProtoryNet - Interpretable Text Classification Via Prototype
Trajectories [4.768286204382179]
本稿では,ProtoryNetと呼ばれるテキスト分類のための新しい解釈可能なディープニューラルネットワークを提案する。
ProtoryNetはテキストシーケンスで各文の最も類似したプロトタイプを見つけることによって予測を行う。
プロトタイプのプルーニングの後、結果のProtoryNetモデルは、すべてのデータセットに対して、20のプロトタイプしか必要としない。
論文 参考訳(メタデータ) (2020-07-03T16:00:26Z) - Learning Sparse Prototypes for Text Generation [120.38555855991562]
プロトタイプ駆動のテキスト生成は、トレーニングコーパス全体の保存とインデックスを必要とするため、テスト時に非効率である。
本稿では,言語モデリング性能を向上するスパースなプロトタイプサポートセットを自動的に学習する新しい生成モデルを提案する。
実験では,1000倍のメモリ削減を実現しつつ,従来のプロトタイプ駆動型言語モデルよりも優れていた。
論文 参考訳(メタデータ) (2020-06-29T19:41:26Z) - Interpretable Entity Representations through Large-Scale Typing [61.4277527871572]
本稿では,人間の読みやすいエンティティ表現を作成し,箱から高パフォーマンスを実現する手法を提案する。
我々の表現は、微粒な実体型に対する後続確率に対応するベクトルである。
特定のドメインに対して,学習に基づく方法で,型セットのサイズを縮小できることを示す。
論文 参考訳(メタデータ) (2020-04-30T23:58:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。