Camera Distortion-aware 3D Human Pose Estimation in Video with
Optimization-based Meta-Learning
- URL: http://arxiv.org/abs/2111.15056v1
- Date: Tue, 30 Nov 2021 01:35:04 GMT
- Title: Camera Distortion-aware 3D Human Pose Estimation in Video with
Optimization-based Meta-Learning
- Authors: Hanbyel Cho, Yooshin Cho, Jaemyung Yu, Junmo Kim
- Abstract summary: Existing 3D human pose estimation algorithms trained on distortion-free datasets suffer performance drop when applied to new scenarios with a specific camera distortion.
We propose a simple yet effective model for 3D human pose estimation in video that can quickly adapt to any distortion environment.
- Score: 23.200130129530653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing 3D human pose estimation algorithms trained on distortion-free
datasets suffer performance drop when applied to new scenarios with a specific
camera distortion. In this paper, we propose a simple yet effective model for
3D human pose estimation in video that can quickly adapt to any distortion
environment by utilizing MAML, a representative optimization-based
meta-learning algorithm. We consider a sequence of 2D keypoints in a particular
distortion as a single task of MAML. However, due to the absence of a
large-scale dataset in a distorted environment, we propose an efficient method
to generate synthetic distorted data from undistorted 2D keypoints. For the
evaluation, we assume two practical testing situations depending on whether a
motion capture sensor is available or not. In particular, we propose Inference
Stage Optimization using bone-length symmetry and consistency. Extensive
evaluation shows that our proposed method successfully adapts to various
degrees of distortion in the testing phase and outperforms the existing
state-of-the-art approaches. The proposed method is useful in practice because
it does not require camera calibration and additional computations in a testing
set-up.
Related papers
- Geometric Transformation Uncertainty for Improving 3D Fetal Brain Pose Prediction from Freehand 2D Ultrasound Videos [0.8579241568505183]
We propose an uncertainty-aware deep learning model for automated 3D plane localization in 2D fetal brain images.
Our proposed method, QAERTS, demonstrates superior pose estimation accuracy than the state-of-the-art and most of the uncertainty-based approaches.
arXiv Detail & Related papers (2024-05-21T22:42:08Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - Personalized 3D Human Pose and Shape Refinement [19.082329060985455]
regression-based methods have dominated the field of 3D human pose and shape estimation.
We propose to construct dense correspondences between initial human model estimates and the corresponding images.
We show that our approach not only consistently leads to better image-model alignment, but also to improved 3D accuracy.
arXiv Detail & Related papers (2024-03-18T10:13:53Z) - Uncertainty-Aware Testing-Time Optimization for 3D Human Pose Estimation [68.75387874066647]
We propose an Uncertainty-Aware testing-time optimization framework for 3D human pose estimation.
Our approach outperforms the previous best result by a large margin of 4.5% on Human3.6M.
arXiv Detail & Related papers (2024-02-04T04:28:02Z) - D3PRefiner: A Diffusion-based Denoise Method for 3D Human Pose
Refinement [3.514184876338779]
A Diffusion-based 3D Pose Refiner is proposed to refine the output of any existing 3D pose estimator.
We leverage the architecture of current diffusion models to convert the distribution of noisy 3D poses into ground truth 3D poses.
Experimental results demonstrate the proposed architecture can significantly improve the performance of current sequence-to-sequence 3D pose estimators.
arXiv Detail & Related papers (2024-01-08T14:21:02Z) - iComMa: Inverting 3D Gaussian Splatting for Camera Pose Estimation via Comparing and Matching [14.737266480464156]
We present a method named iComMa to address the 6D camera pose estimation problem in computer vision.
We propose an efficient method for accurate camera pose estimation by inverting 3D Gaussian Splatting (3DGS)
arXiv Detail & Related papers (2023-12-14T15:31:33Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) aims at fast, accurate and robust camera localizations with respect to a 3D model from 2D-3D feature coordinates.
arXiv Detail & Related papers (2021-07-08T15:19:36Z) - Wide-angle Image Rectification: A Survey [86.36118799330802]
wide-angle images contain distortions that violate the assumptions underlying pinhole camera models.
Image rectification, which aims to correct these distortions, can solve these problems.
We present a detailed description and discussion of the camera models used in different approaches.
Next, we review both traditional geometry-based image rectification methods and deep learning-based methods.
arXiv Detail & Related papers (2020-10-30T17:28:40Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
This paper aims to estimate 3D mesh of multiple body parts with large-scale differences from a single RGB image.
The main challenge is lacking training data that have complete 3D annotations of all body parts in 2D images.
We propose a depth-to-scale (D2S) projection to incorporate the depth difference into the projection function to derive per-joint scale variants.
arXiv Detail & Related papers (2020-10-27T03:31:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.