Learning Large-Time-Step Molecular Dynamics with Graph Neural Networks
- URL: http://arxiv.org/abs/2111.15176v1
- Date: Tue, 30 Nov 2021 07:32:39 GMT
- Title: Learning Large-Time-Step Molecular Dynamics with Graph Neural Networks
- Authors: Tianze Zheng, Weihao Gao and Chong Wang
- Abstract summary: We introduce a graph neural network (GNN) based model, MDNet, to predict the evolution of coordinates and momentum with large time steps.
We demonstrate the performance of MDNet on a 4000-atom system with large time steps, and show that MDNet can predict good equilibrium and transport properties.
- Score: 14.388196138756195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular dynamics (MD) simulation predicts the trajectory of atoms by
solving Newton's equation of motion with a numeric integrator. Due to physical
constraints, the time step of the integrator need to be small to maintain
sufficient precision. This limits the efficiency of simulation. To this end, we
introduce a graph neural network (GNN) based model, MDNet, to predict the
evolution of coordinates and momentum with large time steps. In addition, MDNet
can easily scale to a larger system, due to its linear complexity with respect
to the system size. We demonstrate the performance of MDNet on a 4000-atom
system with large time steps, and show that MDNet can predict good equilibrium
and transport properties, well aligned with standard MD simulations.
Related papers
- Scalable Mechanistic Neural Networks [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.
By reformulating the original Mechanistic Neural Network (MNN) we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.
Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - A Multi-Grained Symmetric Differential Equation Model for Learning
Protein-Ligand Binding Dynamics [74.93549765488103]
In drug discovery, molecular dynamics simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding.
We show the efficiency and effectiveness of NeuralMD, with a 2000$times$ speedup over standard numerical MD simulation and outperforming all other ML approaches by up to 80% under the stability metric.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - ViSNet: an equivariant geometry-enhanced graph neural network with
vector-scalar interactive message passing for molecules [69.05950120497221]
We propose an equivariant geometry-enhanced graph neural network called ViSNet, which elegantly extracts geometric features and efficiently models molecular structures.
Our proposed ViSNet outperforms state-of-the-art approaches on multiple MD benchmarks, including MD17, revised MD17 and MD22, and achieves excellent chemical property prediction on QM9 and Molecule3D datasets.
arXiv Detail & Related papers (2022-10-29T07:12:46Z) - Simulate Time-integrated Coarse-grained Molecular Dynamics with
Multi-Scale Graph Networks [4.444748822792469]
Learning-based force fields have made significant progress in accelerating ab-initio MD simulation but are not fast enough for many real-world applications.
We aim to address these challenges by learning a multi-scale graph neural network that directly simulates coarse-grained MD with a very large time step.
arXiv Detail & Related papers (2022-04-21T18:07:08Z) - Super-resolution in Molecular Dynamics Trajectory Reconstruction with
Bi-Directional Neural Networks [0.0]
We explore different machine learning (ML) methodologies to increase the resolution of molecular dynamics trajectories on-demand within a post-processing step.
We have found that Bi-LSTMs are the best performing models; by utilizing the local time-symmetry of thermostated trajectories they can even learn long-range correlations and display high robustness to noisy dynamics across molecular complexity.
arXiv Detail & Related papers (2022-01-02T23:00:30Z) - Graph Neural Networks Accelerated Molecular Dynamics [0.0]
We developed a GNN Accelerated Molecular Dynamics (GAMD) model that achieves fast and accurate force predictions.
Our results show that GAMD can accurately predict the dynamics of two typical molecular systems, Lennard-Jones (LJ) particles and Water (LJ+Electrostatics)
arXiv Detail & Related papers (2021-12-06T22:11:00Z) - ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations [86.41674945012369]
We develop a scalable and expressive Graph Neural Networks model, ForceNet, to approximate atomic forces.
Our proposed ForceNet is able to predict atomic forces more accurately than state-of-the-art physics-based GNNs.
arXiv Detail & Related papers (2021-03-02T03:09:06Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.