Simulate Time-integrated Coarse-grained Molecular Dynamics with
Multi-Scale Graph Networks
- URL: http://arxiv.org/abs/2204.10348v3
- Date: Sat, 26 Aug 2023 21:35:16 GMT
- Title: Simulate Time-integrated Coarse-grained Molecular Dynamics with
Multi-Scale Graph Networks
- Authors: Xiang Fu, Tian Xie, Nathan J. Rebello, Bradley D. Olsen, Tommi
Jaakkola
- Abstract summary: Learning-based force fields have made significant progress in accelerating ab-initio MD simulation but are not fast enough for many real-world applications.
We aim to address these challenges by learning a multi-scale graph neural network that directly simulates coarse-grained MD with a very large time step.
- Score: 4.444748822792469
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular dynamics (MD) simulation is essential for various scientific
domains but computationally expensive. Learning-based force fields have made
significant progress in accelerating ab-initio MD simulation but are not fast
enough for many real-world applications due to slow inference for large systems
and small time steps (femtosecond-level). We aim to address these challenges by
learning a multi-scale graph neural network that directly simulates
coarse-grained MD with a very large time step (nanosecond-level) and a novel
refinement module based on diffusion models to mitigate simulation instability.
The effectiveness of our method is demonstrated in two complex systems:
single-chain coarse-grained polymers and multi-component Li-ion polymer
electrolytes. For evaluation, we simulate trajectories much longer than the
training trajectories for systems with different chemical compositions that the
model is not trained on. Structural and dynamical properties can be accurately
recovered at several orders of magnitude higher speed than classical force
fields by getting out of the femtosecond regime.
Related papers
- A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Rethinking materials simulations: Blending direct numerical simulations
with neural operators [1.6874375111244329]
We develop a new method that blends numerical solvers with neural operators to accelerate such simulations.
We demonstrate the effectiveness of this framework on simulations of microstructure evolution during physical vapor deposition.
arXiv Detail & Related papers (2023-12-08T23:44:54Z) - Towards Complex Dynamic Physics System Simulation with Graph Neural ODEs [75.7104463046767]
This paper proposes a novel learning based simulation model that characterizes the varying spatial and temporal dependencies in particle systems.
We empirically evaluate GNSTODE's simulation performance on two real-world particle systems, Gravity and Coulomb.
arXiv Detail & Related papers (2023-05-21T03:51:03Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Timewarp: Transferable Acceleration of Molecular Dynamics by Learning
Time-Coarsened Dynamics [24.13304926093212]
We present Timewarp, an enhanced sampling method which uses a normalising flow as a proposal distribution in a Markov chain Monte Carlo method.
The flow is trained offline on MD trajectories and learns to make large steps in time, simulating the molecular dynamics of $105 - 106:textrmfs$.
arXiv Detail & Related papers (2023-02-02T15:48:39Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
We introduce a deep learning-based corrector called Neural Vector (NeurVec)
NeurVec can compensate for integration errors and enable larger time step sizes in simulations.
Our experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability.
arXiv Detail & Related papers (2022-08-07T09:02:18Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Super-resolution in Molecular Dynamics Trajectory Reconstruction with
Bi-Directional Neural Networks [0.0]
We explore different machine learning (ML) methodologies to increase the resolution of molecular dynamics trajectories on-demand within a post-processing step.
We have found that Bi-LSTMs are the best performing models; by utilizing the local time-symmetry of thermostated trajectories they can even learn long-range correlations and display high robustness to noisy dynamics across molecular complexity.
arXiv Detail & Related papers (2022-01-02T23:00:30Z) - Graph Neural Networks Accelerated Molecular Dynamics [0.0]
We developed a GNN Accelerated Molecular Dynamics (GAMD) model that achieves fast and accurate force predictions.
Our results show that GAMD can accurately predict the dynamics of two typical molecular systems, Lennard-Jones (LJ) particles and Water (LJ+Electrostatics)
arXiv Detail & Related papers (2021-12-06T22:11:00Z) - Molecular Latent Space Simulators [8.274472944075713]
We propose latent space simulators (LSS) to learn kinetic models for continuous all-atom simulation trajectories.
We demonstrate the approach in an application to Trp-protein to produce novel ultra-long synthetic folding trajectories.
arXiv Detail & Related papers (2020-07-01T20:05:27Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.