Point Cloud Instance Segmentation with Semi-supervised Bounding-Box
Mining
- URL: http://arxiv.org/abs/2111.15210v1
- Date: Tue, 30 Nov 2021 08:40:40 GMT
- Title: Point Cloud Instance Segmentation with Semi-supervised Bounding-Box
Mining
- Authors: Yongbin Liao, Hongyuan Zhu, Yanggang Zhang, Chuangguan Ye, Tao Chen,
and Jiayuan Fan
- Abstract summary: We introduce the first semi-supervised point cloud instance segmentation framework (SPIB) using both labeled and unlabelled bounding boxes as supervision.
Our method can achieve competitive performance compared with the recent fully-supervised methods.
- Score: 17.69745159912481
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud instance segmentation has achieved huge progress with the
emergence of deep learning. However, these methods are usually data-hungry with
expensive and time-consuming dense point cloud annotations. To alleviate the
annotation cost, unlabeled or weakly labeled data is still less explored in the
task. In this paper, we introduce the first semi-supervised point cloud
instance segmentation framework (SPIB) using both labeled and unlabelled
bounding boxes as supervision. To be specific, our SPIB architecture involves a
two-stage learning procedure. For stage one, a bounding box proposal generation
network is trained under a semi-supervised setting with perturbation
consistency regularization (SPCR). The regularization works by enforcing an
invariance of the bounding box predictions over different perturbations applied
to the input point clouds, to provide self-supervision for network learning.
For stage two, the bounding box proposals with SPCR are grouped into some
subsets, and the instance masks are mined inside each subset with a novel
semantic propagation module and a property consistency graph module. Moreover,
we introduce a novel occupancy ratio guided refinement module to refine the
instance masks. Extensive experiments on the challenging ScanNet v2 dataset
demonstrate our method can achieve competitive performance compared with the
recent fully-supervised methods.
Related papers
- BAISeg: Boundary Assisted Weakly Supervised Instance Segmentation [9.6046915661065]
How to extract instance-level masks without instance-level supervision is the main challenge of weakly supervised instance segmentation (WSIS)
Popular WSIS methods estimate a displacement field (DF) via learning inter-pixel relations and perform clustering to identify instances.
We propose Boundary-Assisted Instance (BAISeg), which is a novel paradigm for WSIS that realizes instance segmentation with pixel-level annotations.
arXiv Detail & Related papers (2024-05-27T15:14:09Z) - Enhancing Weakly Supervised Semantic Segmentation with Multi-modal Foundation Models: An End-to-End Approach [7.012760526318993]
Weakly-Supervised Semantic (WSSS) offers a cost-efficient workaround to extensive labeling.
Existing WSSS methods have difficulties in learning the boundaries of objects leading to poor segmentation results.
We propose a novel and effective framework that addresses these issues by leveraging visual foundation models inside the bounding box.
arXiv Detail & Related papers (2024-05-10T16:42:25Z) - Skeleton-Guided Instance Separation for Fine-Grained Segmentation in
Microscopy [23.848474219551818]
One of the fundamental challenges in microscopy (MS) image analysis is instance segmentation (IS)
We propose a novel one-stage framework named A2B-IS to address this challenge and enhance the accuracy of IS in MS images.
Our method has been thoroughly validated on two large-scale MS datasets.
arXiv Detail & Related papers (2024-01-18T11:14:32Z) - FreePoint: Unsupervised Point Cloud Instance Segmentation [72.64540130803687]
We propose FreePoint, for underexplored unsupervised class-agnostic instance segmentation on point clouds.
We represent point features by combining coordinates, colors, and self-supervised deep features.
Based on the point features, we segment point clouds into coarse instance masks as pseudo labels, which are used to train a point cloud instance segmentation model.
arXiv Detail & Related papers (2023-05-11T16:56:26Z) - Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud [69.36717778451667]
Existing methods for large-scale point cloud semantic segmentation require expensive, tedious and error-prone manual point-wise annotations.
We propose an effective weakly supervised method containing two components to solve the problem.
The experimental results show the large gain against existing weakly supervised and comparable results to fully supervised methods.
arXiv Detail & Related papers (2022-12-09T09:42:26Z) - Collaborative Propagation on Multiple Instance Graphs for 3D Instance
Segmentation with Single-point Supervision [63.429704654271475]
We propose a novel weakly supervised method RWSeg that only requires labeling one object with one point.
With these sparse weak labels, we introduce a unified framework with two branches to propagate semantic and instance information.
Specifically, we propose a Cross-graph Competing Random Walks (CRW) algorithm that encourages competition among different instance graphs.
arXiv Detail & Related papers (2022-08-10T02:14:39Z) - Box-supervised Instance Segmentation with Level Set Evolution [41.19797478617953]
We propose a box-supervised instance segmentation approach, which integrates the classical level set model with deep neural network delicately.
A simple mask supervised SOLOv2 model is adapted to predict the instance-aware mask map as the level set for each instance.
The experimental results on four challenging benchmarks demonstrate the leading performance of our proposed approach.
arXiv Detail & Related papers (2022-07-19T03:59:44Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
We propose a novel approach that achieves self-supervised and magnification-flexible point clouds upsampling simultaneously.
Experimental results demonstrate that our self-supervised learning based scheme achieves competitive or even better performance than supervised learning based state-of-the-art methods.
arXiv Detail & Related papers (2022-04-18T07:18:25Z) - CPSeg: Cluster-free Panoptic Segmentation of 3D LiDAR Point Clouds [2.891413712995641]
We propose a novel real-time end-to-end panoptic segmentation network for LiDAR point clouds, called CPSeg.
CPSeg comprises a shared encoder, a dual decoder, a task-aware attention module (TAM) and a cluster-free instance segmentation head.
arXiv Detail & Related papers (2021-11-02T16:44:06Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
We propose a weakly- and semi-supervised object detection framework (WSSOD)
An agent detector is first trained on a joint dataset and then used to predict pseudo bounding boxes on weakly-annotated images.
The proposed framework demonstrates remarkable performance on PASCAL-VOC and MSCOCO benchmark, achieving a high performance comparable to those obtained in fully-supervised settings.
arXiv Detail & Related papers (2021-05-21T11:58:50Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.