Skeleton-Guided Instance Separation for Fine-Grained Segmentation in
Microscopy
- URL: http://arxiv.org/abs/2401.09895v2
- Date: Fri, 19 Jan 2024 05:27:15 GMT
- Title: Skeleton-Guided Instance Separation for Fine-Grained Segmentation in
Microscopy
- Authors: Jun Wang, Chengfeng Zhou, Zhaoyan Ming, Lina Wei, Xudong Jiang, and
Dahong Qian
- Abstract summary: One of the fundamental challenges in microscopy (MS) image analysis is instance segmentation (IS)
We propose a novel one-stage framework named A2B-IS to address this challenge and enhance the accuracy of IS in MS images.
Our method has been thoroughly validated on two large-scale MS datasets.
- Score: 23.848474219551818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the fundamental challenges in microscopy (MS) image analysis is
instance segmentation (IS), particularly when segmenting cluster regions where
multiple objects of varying sizes and shapes may be connected or even
overlapped in arbitrary orientations. Existing IS methods usually fail in
handling such scenarios, as they rely on coarse instance representations such
as keypoints and horizontal bounding boxes (h-bboxes). In this paper, we
propose a novel one-stage framework named A2B-IS to address this challenge and
enhance the accuracy of IS in MS images. Our approach represents each instance
with a pixel-level mask map and a rotated bounding box (r-bbox). Unlike
two-stage methods that use box proposals for segmentations, our method
decouples mask and box predictions, enabling simultaneous processing to
streamline the model pipeline. Additionally, we introduce a Gaussian skeleton
map to aid the IS task in two key ways: (1) It guides anchor placement,
reducing computational costs while improving the model's capacity to learn
RoI-aware features by filtering out noise from background regions. (2) It
ensures accurate isolation of densely packed instances by rectifying erroneous
box predictions near instance boundaries. To further enhance the performance,
we integrate two modules into the framework: (1) An Atrous Attention Block
(A2B) designed to extract high-resolution feature maps with fine-grained
multiscale information, and (2) A Semi-Supervised Learning (SSL) strategy that
leverages both labeled and unlabeled images for model training. Our method has
been thoroughly validated on two large-scale MS datasets, demonstrating its
superiority over most state-of-the-art approaches.
Related papers
- Towards Self-Supervised FG-SBIR with Unified Sample Feature Alignment and Multi-Scale Token Recycling [11.129453244307369]
FG-SBIR aims to minimize the distance between sketches and corresponding images in the embedding space.
We propose an effective approach to narrow the gap between the two domains.
It mainly facilitates unified mutual information sharing both intra- and inter-samples.
arXiv Detail & Related papers (2024-06-17T13:49:12Z) - Enhancing Weakly Supervised Semantic Segmentation with Multi-modal Foundation Models: An End-to-End Approach [7.012760526318993]
Weakly-Supervised Semantic (WSSS) offers a cost-efficient workaround to extensive labeling.
Existing WSSS methods have difficulties in learning the boundaries of objects leading to poor segmentation results.
We propose a novel and effective framework that addresses these issues by leveraging visual foundation models inside the bounding box.
arXiv Detail & Related papers (2024-05-10T16:42:25Z) - PosSAM: Panoptic Open-vocabulary Segment Anything [58.72494640363136]
PosSAM is an open-vocabulary panoptic segmentation model that unifies the strengths of the Segment Anything Model (SAM) with the vision-native CLIP model in an end-to-end framework.
We introduce a Mask-Aware Selective Ensembling (MASE) algorithm that adaptively enhances the quality of generated masks and boosts the performance of open-vocabulary classification during inference for each image.
arXiv Detail & Related papers (2024-03-14T17:55:03Z) - Multi-Granularity Denoising and Bidirectional Alignment for Weakly
Supervised Semantic Segmentation [75.32213865436442]
We propose an end-to-end multi-granularity denoising and bidirectional alignment (MDBA) model to alleviate the noisy label and multi-class generalization issues.
The MDBA model can reach the mIoU of 69.5% and 70.2% on validation and test sets for the PASCAL VOC 2012 dataset.
arXiv Detail & Related papers (2023-05-09T03:33:43Z) - Boosting Few-shot Fine-grained Recognition with Background Suppression
and Foreground Alignment [53.401889855278704]
Few-shot fine-grained recognition (FS-FGR) aims to recognize novel fine-grained categories with the help of limited available samples.
We propose a two-stage background suppression and foreground alignment framework, which is composed of a background activation suppression (BAS) module, a foreground object alignment (FOA) module, and a local to local (L2L) similarity metric.
Experiments conducted on multiple popular fine-grained benchmarks demonstrate that our method outperforms the existing state-of-the-art by a large margin.
arXiv Detail & Related papers (2022-10-04T07:54:40Z) - Point Cloud Instance Segmentation with Semi-supervised Bounding-Box
Mining [17.69745159912481]
We introduce the first semi-supervised point cloud instance segmentation framework (SPIB) using both labeled and unlabelled bounding boxes as supervision.
Our method can achieve competitive performance compared with the recent fully-supervised methods.
arXiv Detail & Related papers (2021-11-30T08:40:40Z) - BoundarySqueeze: Image Segmentation as Boundary Squeezing [104.43159799559464]
We propose a novel method for fine-grained high-quality image segmentation of both objects and scenes.
Inspired by dilation and erosion from morphological image processing techniques, we treat the pixel level segmentation problems as squeezing object boundary.
Our method yields large gains on COCO, Cityscapes, for both instance and semantic segmentation and outperforms previous state-of-the-art PointRend in both accuracy and speed under the same setting.
arXiv Detail & Related papers (2021-05-25T04:58:51Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
We propose to adopt the graph propagation to capture the observed spatial contexts.
We then apply the attention mechanism on the propagation, which encourages the network to model the contextual information adaptively.
Finally, we introduce the symmetric gated fusion strategy to exploit the extracted multi-modal features effectively.
Our model, named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the state-of-the-art performance on two benchmarks.
arXiv Detail & Related papers (2020-08-25T06:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.