P2Object: Single Point Supervised Object Detection and Instance Segmentation
- URL: http://arxiv.org/abs/2504.07813v1
- Date: Thu, 10 Apr 2025 14:51:08 GMT
- Title: P2Object: Single Point Supervised Object Detection and Instance Segmentation
- Authors: Pengfei Chen, Xuehui Yu, Xumeng Han, Kuiran Wang, Guorong Li, Lingxi Xie, Zhenjun Han, Jianbin Jiao,
- Abstract summary: We introduce Point-to-Box Network (P2BNet), which constructs balanced textbftextitinstance-level proposal bags<n>P2MNet can generate more precise bounding boxes and generalize to segmentation tasks.<n>Our method largely surpasses the previous methods in terms of the mean average precision on COCO, VOC, and Cityscapes.
- Score: 58.778288785355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object recognition using single-point supervision has attracted increasing attention recently. However, the performance gap compared with fully-supervised algorithms remains large. Previous works generated class-agnostic \textbf{\textit{proposals in an image}} offline and then treated mixed candidates as a single bag, putting a huge burden on multiple instance learning (MIL). In this paper, we introduce Point-to-Box Network (P2BNet), which constructs balanced \textbf{\textit{instance-level proposal bags}} by generating proposals in an anchor-like way and refining the proposals in a coarse-to-fine paradigm. Through further research, we find that the bag of proposals, either at the image level or the instance level, is established on discrete box sampling. This leads the pseudo box estimation into a sub-optimal solution, resulting in the truncation of object boundaries or the excessive inclusion of background. Hence, we conduct a series exploration of discrete-to-continuous optimization, yielding P2BNet++ and Point-to-Mask Network (P2MNet). P2BNet++ conducts an approximately continuous proposal sampling strategy by better utilizing spatial clues. P2MNet further introduces low-level image information to assist in pixel prediction, and a boundary self-prediction is designed to relieve the limitation of the estimated boxes. Benefiting from the continuous object-aware \textbf{\textit{pixel-level perception}}, P2MNet can generate more precise bounding boxes and generalize to segmentation tasks. Our method largely surpasses the previous methods in terms of the mean average precision on COCO, VOC, SBD, and Cityscapes, demonstrating great potential to bridge the performance gap compared with fully supervised tasks.
Related papers
- Skeleton-Guided Instance Separation for Fine-Grained Segmentation in
Microscopy [23.848474219551818]
One of the fundamental challenges in microscopy (MS) image analysis is instance segmentation (IS)
We propose a novel one-stage framework named A2B-IS to address this challenge and enhance the accuracy of IS in MS images.
Our method has been thoroughly validated on two large-scale MS datasets.
arXiv Detail & Related papers (2024-01-18T11:14:32Z) - PointOBB: Learning Oriented Object Detection via Single Point
Supervision [55.88982271340328]
This paper proposes PointOBB, the first single Point-based OBB generation method, for oriented object detection.
PointOBB operates through the collaborative utilization of three distinctive views: an original view, a resized view, and a rotated/flipped (rot/flp) view.
Experimental results on the DIOR-R and DOTA-v1.0 datasets demonstrate that PointOBB achieves promising performance.
arXiv Detail & Related papers (2023-11-23T15:51:50Z) - Point-to-Box Network for Accurate Object Detection via Single Point
Supervision [51.95993495703855]
We introduce a lightweight alternative to the off-the-shelf proposal (OTSP) method.
P2BNet can construct an inter-objects balanced proposal bag by generating proposals in an anchor-like way.
The code will be released at COCO.com/ucas-vg/P2BNet.
arXiv Detail & Related papers (2022-07-14T11:32:00Z) - Point Cloud Instance Segmentation with Semi-supervised Bounding-Box
Mining [17.69745159912481]
We introduce the first semi-supervised point cloud instance segmentation framework (SPIB) using both labeled and unlabelled bounding boxes as supervision.
Our method can achieve competitive performance compared with the recent fully-supervised methods.
arXiv Detail & Related papers (2021-11-30T08:40:40Z) - Rethinking Counting and Localization in Crowds:A Purely Point-Based
Framework [59.578339075658995]
We propose a purely point-based framework for joint crowd counting and individual localization.
We design an intuitive solution under this framework, which is called Point to Point Network (P2PNet)
arXiv Detail & Related papers (2021-07-27T11:41:50Z) - Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals [78.12377360145078]
We introduce a novel two-step framework that adopts a predetermined prior in a contrastive optimization objective to learn pixel embeddings.
This marks a large deviation from existing works that relied on proxy tasks or end-to-end clustering.
In particular, when fine-tuning the learned representations using just 1% of labeled examples on PASCAL, we outperform supervised ImageNet pre-training by 7.1% mIoU.
arXiv Detail & Related papers (2021-02-11T18:54:47Z) - 1st Place Solutions for OpenImage2019 -- Object Detection and Instance
Segmentation [116.25081559037872]
This article introduces the solutions of the two champion teams, MMfruit' for the detection track and MMfruitSeg' for the segmentation track, in OpenImage Challenge 2019.
It is commonly known that for an object detector, the shared feature at the end of the backbone is not appropriate for both classification and regression.
We propose the Decoupling Head (DH) to disentangle the object classification and regression via the self-learned optimal feature extraction.
arXiv Detail & Related papers (2020-03-17T06:45:07Z) - Towards Bounding-Box Free Panoptic Segmentation [16.4548904544277]
We introduce a new Bounding-Box Free Network (BBFNet) for panoptic segmentation.
BBFNet predicts coarse watershed levels and uses them to detect large instance candidates where boundaries are well defined.
For smaller instances, whose boundaries are less reliable, BBFNet also predicts instance centers by means of Hough voting followed by mean-shift to reliably detect small objects.
arXiv Detail & Related papers (2020-02-18T16:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.