Global Collinearity-aware Polygonizer for Polygonal Building Mapping in Remote Sensing
- URL: http://arxiv.org/abs/2505.01385v1
- Date: Fri, 02 May 2025 16:49:07 GMT
- Title: Global Collinearity-aware Polygonizer for Polygonal Building Mapping in Remote Sensing
- Authors: Fahong Zhang, Yilei Shi, Xiao Xiang Zhu,
- Abstract summary: This paper addresses the challenge of mapping polygonal buildings from remote sensing images.<n>It introduces a novel algorithm, the Global Collinearity-aware Polygonizer (GCP)
- Score: 18.151134198549574
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the challenge of mapping polygonal buildings from remote sensing images and introduces a novel algorithm, the Global Collinearity-aware Polygonizer (GCP). GCP, built upon an instance segmentation framework, processes binary masks produced by any instance segmentation model. The algorithm begins by collecting polylines sampled along the contours of the binary masks. These polylines undergo a refinement process using a transformer-based regression module to ensure they accurately fit the contours of the targeted building instances. Subsequently, a collinearity-aware polygon simplification module simplifies these refined polylines and generate the final polygon representation. This module employs dynamic programming technique to optimize an objective function that balances the simplicity and fidelity of the polygons, achieving globally optimal solutions. Furthermore, the optimized collinearity-aware objective is seamlessly integrated into network training, enhancing the cohesiveness of the entire pipeline. The effectiveness of GCP has been validated on two public benchmarks for polygonal building mapping. Further experiments reveal that applying the collinearity-aware polygon simplification module to arbitrary polylines, without prior knowledge, enhances accuracy over traditional methods such as the Douglas-Peucker algorithm. This finding underscores the broad applicability of GCP. The code for the proposed method will be made available at https://github.com/zhu-xlab.
Related papers
- LDPoly: Latent Diffusion for Polygonal Road Outline Extraction in Large-Scale Topographic Mapping [5.093758132026397]
We introduce LDPoly, the first framework for extracting polygonal road outlines from high-resolution aerial images.<n>We evaluate LDPoly on a new benchmark dataset, Map2ImLas, which contains detailed polygonal annotations for various topographic objects in several Dutch regions.
arXiv Detail & Related papers (2025-04-29T11:13:33Z) - SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.<n>Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.<n>In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - Learning Geometric Invariant Features for Classification of Vector Polygons with Graph Message-passing Neural Network [3.804240190982697]
We propose a novel graph message-passing neural network (PolyMP) to learn the geometric-invariant features for shape classification of polygons.
We show that the proposed graph-based PolyMP network enables the learning of expressive geometric features invariant to geometric transformations of polygons.
arXiv Detail & Related papers (2024-07-05T08:19:36Z) - P2PFormer: A Primitive-to-polygon Method for Regular Building Contour Extraction from Remote Sensing Images [5.589842901102337]
Existing methods struggle with irregular contours, rounded corners, and redundancy points.<n>We introduce a novel, streamlined pipeline that generates regular building contours without post-processing.<n>P2PFormer achieves new state-of-the-art performance on the WHU, CrowdAI, and WHU-Mix datasets.
arXiv Detail & Related papers (2024-06-05T04:38:45Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - PolyGNN: Polyhedron-based Graph Neural Network for 3D Building Reconstruction from Point Clouds [22.18061879431175]
PolyGNN is a graph neural network for building reconstruction point clouds.
It learns to assemble primitives obtained by polyhedral decomposition.
We conduct a transferability analysis across cities and on real-world point clouds.
arXiv Detail & Related papers (2023-07-17T16:52:25Z) - Recurrent Generic Contour-based Instance Segmentation with Progressive
Learning [111.31166268300817]
We propose a novel deep network architecture, i.e., PolySnake, for generic contour-based instance segmentation.
Motivated by the classic Snake algorithm, the proposed PolySnake achieves superior and robust segmentation performance.
arXiv Detail & Related papers (2023-01-21T05:34:29Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - PolyBuilding: Polygon Transformer for End-to-End Building Extraction [9.196604757138825]
PolyBuilding predicts vector representation of buildings from remote sensing images.
Model learns the relations among them and encodes context information from the image to predict the final set of building polygons.
It also achieves a new state-of-the-art in terms of pixel-level coverage, instance-level precision and recall, and geometry-level properties.
arXiv Detail & Related papers (2022-11-03T04:53:17Z) - Towards General-Purpose Representation Learning of Polygonal Geometries [62.34832826705641]
We develop a general-purpose polygon encoding model, which can encode a polygonal geometry into an embedding space.
We conduct experiments on two tasks: 1) shape classification based on MNIST; 2) spatial relation prediction based on two new datasets - DBSR-46K and DBSR-cplx46K.
Our results show that NUFTspec and ResNet1D outperform multiple existing baselines with significant margins.
arXiv Detail & Related papers (2022-09-29T15:59:23Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - PolyWorld: Polygonal Building Extraction with Graph Neural Networks in
Satellite Images [10.661430927191205]
This paper introduces PolyWorld, a neural network that directly extracts building vertices from an image and connects them correctly to create precise polygons.
PolyWorld significantly outperforms the state-of-the-art in building polygonization.
arXiv Detail & Related papers (2021-11-30T15:23:17Z) - PolyNet: Polynomial Neural Network for 3D Shape Recognition with
PolyShape Representation [51.147664305955495]
3D shape representation and its processing have substantial effects on 3D shape recognition.
We propose a deep neural network-based method (PolyNet) and a specific polygon representation (PolyShape)
Our experiments demonstrate the strength and the advantages of PolyNet on both 3D shape classification and retrieval tasks.
arXiv Detail & Related papers (2021-10-15T06:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.