SuperpixelGraph: Semi-automatic generation of building footprint through
semantic-sensitive superpixel and neural graph networks
- URL: http://arxiv.org/abs/2304.05661v2
- Date: Tue, 20 Jun 2023 08:07:09 GMT
- Title: SuperpixelGraph: Semi-automatic generation of building footprint through
semantic-sensitive superpixel and neural graph networks
- Authors: Haojia Yu, Han Hu, Bo Xu, Qisen Shang, Zhendong Wang and Qing Zhu
- Abstract summary: Most urban applications necessitate building footprints in the form of concise vector graphics with sharp boundaries.
This paper introduces a semi-automatic approach for building footprint extraction through semantically-sensitive superpixels and neural graph networks.
- Score: 21.523846989009886
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Most urban applications necessitate building footprints in the form of
concise vector graphics with sharp boundaries rather than pixel-wise raster
images. This need contrasts with the majority of existing methods, which
typically generate over-smoothed footprint polygons. Editing these
automatically produced polygons can be inefficient, if not more time-consuming
than manual digitization. This paper introduces a semi-automatic approach for
building footprint extraction through semantically-sensitive superpixels and
neural graph networks. Drawing inspiration from object-based classification
techniques, we first learn to generate superpixels that are not only
boundary-preserving but also semantically-sensitive. The superpixels respond
exclusively to building boundaries rather than other natural objects, while
simultaneously producing semantic segmentation of the buildings. These
intermediate superpixel representations can be naturally considered as nodes
within a graph. Consequently, graph neural networks are employed to model the
global interactions among all superpixels and enhance the representativeness of
node features for building segmentation. Classical approaches are utilized to
extract and regularize boundaries for the vectorized building footprints.
Utilizing minimal clicks and straightforward strokes, we efficiently accomplish
accurate segmentation outcomes, eliminating the necessity for editing polygon
vertices. Our proposed approach demonstrates superior precision and efficacy,
as validated by experimental assessments on various public benchmark datasets.
A significant improvement of 8% in AP50 was observed in vector graphics
evaluation, surpassing established techniques. Additionally, we have devised an
optimized and sophisticated pipeline for interactive editing, poised to further
augment the overall quality of the results.
Related papers
- Enhancing Polygonal Building Segmentation via Oriented Corners [0.3749861135832072]
This paper introduces a novel deep convolutional neural network named OriCornerNet, which directly extracts delineated building polygons from input images.
Our approach involves a deep model that predicts building footprint masks, corners, and orientation vectors that indicate directions toward adjacent corners.
Performance evaluations conducted on SpaceNet Vegas and CrowdAI-small datasets demonstrate the competitive efficacy of our approach.
arXiv Detail & Related papers (2024-07-17T01:59:06Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - PolyWorld: Polygonal Building Extraction with Graph Neural Networks in
Satellite Images [10.661430927191205]
This paper introduces PolyWorld, a neural network that directly extracts building vertices from an image and connects them correctly to create precise polygons.
PolyWorld significantly outperforms the state-of-the-art in building polygonization.
arXiv Detail & Related papers (2021-11-30T15:23:17Z) - PSGR: Pixel-wise Sparse Graph Reasoning for COVID-19 Pneumonia
Segmentation in CT Images [83.26057031236965]
We propose a pixel-wise sparse graph reasoning (PSGR) module to enhance the modeling of long-range dependencies for COVID-19 infected region segmentation in CT images.
The PSGR module avoids imprecise pixel-to-node projections and preserves the inherent information of each pixel for global reasoning.
The solution has been evaluated against four widely-used segmentation models on three public datasets.
arXiv Detail & Related papers (2021-08-09T04:58:23Z) - Implicit Integration of Superpixel Segmentation into Fully Convolutional
Networks [11.696069523681178]
We propose a way to implicitly integrate a superpixel scheme into CNNs.
Our proposed method hierarchically groups pixels at downsampling layers and generates superpixels.
We evaluate our method on several tasks such as semantic segmentation, superpixel segmentation, and monocular depth estimation.
arXiv Detail & Related papers (2021-03-05T02:20:26Z) - AINet: Association Implantation for Superpixel Segmentation [82.21559299694555]
We propose a novel textbfAssociation textbfImplantation (AI) module to enable the network to explicitly capture the relations between the pixel and its surrounding grids.
Our method could not only achieve state-of-the-art performance but maintain satisfactory inference efficiency.
arXiv Detail & Related papers (2021-01-26T10:40:13Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
We propose a novel framework called Squeeze Reasoning.
Instead of propagating information on the spatial map, we first learn to squeeze the input feature into a channel-wise global vector.
We show that our approach can be modularized as an end-to-end trained block and can be easily plugged into existing networks.
arXiv Detail & Related papers (2020-11-06T12:17:01Z) - Visual Object Tracking by Segmentation with Graph Convolutional Network [7.729569666460712]
We propose to utilize graph convolutional network (GCN) model for superpixel based object tracking.
The proposed model provides a general end-to-end framework which integrates i) label linear prediction, and ii) structure-aware feature information of each superpixel together.
arXiv Detail & Related papers (2020-09-05T12:43:21Z) - ITSELF: Iterative Saliency Estimation fLexible Framework [68.8204255655161]
Saliency object detection estimates the objects that most stand out in an image.
We propose a superpixel-based ITerative Saliency Estimation fLexible Framework (ITSELF) that allows any user-defined assumptions to be added to the model.
We compare ITSELF to two state-of-the-art saliency estimators on five metrics and six datasets.
arXiv Detail & Related papers (2020-06-30T16:51:31Z) - Superpixel Segmentation with Fully Convolutional Networks [32.878045921919714]
We present a novel method that employs a simple fully convolutional network to predict superpixels on a regular image grid.
Experimental results on benchmark datasets show that our method achieves state-of-the-art superpixel segmentation performance.
We modify a popular network architecture for stereo matching to simultaneously predict superpixels and disparities.
arXiv Detail & Related papers (2020-03-29T02:42:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.