論文の概要: NeuSample: Neural Sample Field for Efficient View Synthesis
- arxiv url: http://arxiv.org/abs/2111.15552v1
- Date: Tue, 30 Nov 2021 16:43:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-01 16:22:57.681237
- Title: NeuSample: Neural Sample Field for Efficient View Synthesis
- Title(参考訳): NeuSample: 効率的なビュー合成のためのニューラルネットワークサンプルフィールド
- Authors: Jiemin Fang, Lingxi Xie, Xinggang Wang, Xiaopeng Zhang, Wenyu Liu, Qi
Tian
- Abstract要約: 本稿では,ニューラルサンプル場を命名する軽量モジュールを提案する。
提案したサンプルフィールドは、線をサンプル分布にマッピングし、点座標に変換し、ボリュームレンダリングのために放射場に供給することができる。
我々はNeuSampleが高速な推論速度を保ちながら、NeRFよりも優れたレンダリング品質を実現することを示す。
- 参考スコア(独自算出の注目度): 129.10351459066501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural radiance fields (NeRF) have shown great potentials in representing 3D
scenes and synthesizing novel views, but the computational overhead of NeRF at
the inference stage is still heavy. To alleviate the burden, we delve into the
coarse-to-fine, hierarchical sampling procedure of NeRF and point out that the
coarse stage can be replaced by a lightweight module which we name a neural
sample field. The proposed sample field maps rays into sample distributions,
which can be transformed into point coordinates and fed into radiance fields
for volume rendering. The overall framework is named as NeuSample. We perform
experiments on Realistic Synthetic 360$^{\circ}$ and Real Forward-Facing, two
popular 3D scene sets, and show that NeuSample achieves better rendering
quality than NeRF while enjoying a faster inference speed. NeuSample is further
compressed with a proposed sample field extraction method towards a better
trade-off between quality and speed.
- Abstract(参考訳): ニューラルレイディアンス場(NeRF)は3次元シーンの表現や新しいビューの合成において大きな可能性を示しているが、推論段階でのNeRFの計算オーバーヘッドは依然として重い。
重みを緩和するために、我々はNeRFの粗大で階層的なサンプリング手順を掘り下げ、粗大なステージをニューラルネットワークのサンプルフィールドと名付ける軽量モジュールに置き換えることができることを指摘した。
提案したサンプルフィールドは、線をサンプル分布にマッピングし、点座標に変換し、ボリュームレンダリングのために放射場に供給することができる。
全体的なフレームワークはNeuSampleという名称だ。
実写合成360$^{\circ}$とReal Forward-Facingの2つの人気のある3Dシーンセットで実験を行い、NeuSampleが高速な推論速度を楽しみながら、NeRFよりも優れたレンダリング品質を実現することを示す。
NeuSampleはさらに、品質と速度のトレードオフを改善するためのサンプルフィールド抽出法によって圧縮される。
関連論文リスト
- Mesh2NeRF: Direct Mesh Supervision for Neural Radiance Field Representation and Generation [51.346733271166926]
Mesh2NeRFは、3次元生成タスクのためのテクスチャメッシュから地上構造放射場を導出するアプローチである。
各種タスクにおけるMesh2NeRFの有効性を検証する。
論文 参考訳(メタデータ) (2024-03-28T11:22:53Z) - ProNeRF: Learning Efficient Projection-Aware Ray Sampling for
Fine-Grained Implicit Neural Radiance Fields [27.008124938806944]
メモリフットプリント(NeRFに似ている)、スピード(HyperReelより速い)、品質(K-Planesより速い)の最適なトレードオフを提供するProNeRFを提案する。
我々のProNeRFは最先端の計測値であり、最も優れたサンプルベース手法であるHyperReelよりも15-23倍高速で、PSNRは0.65dB高く、PSNRは0.95dB高い。
論文 参考訳(メタデータ) (2023-12-13T13:37:32Z) - Adaptive Shells for Efficient Neural Radiance Field Rendering [92.18962730460842]
本稿では, 表面および表面のレンダリングを円滑に遷移させるニューラル放射率の定式化を提案する。
我々の手法は、非常に高い忠実度で効率的なレンダリングを可能にする。
また,抽出したエンベロープは,アニメーションやシミュレーションなどの下流アプリケーションを可能にすることを示す。
論文 参考訳(メタデータ) (2023-11-16T18:58:55Z) - Improving Neural Radiance Field using Near-Surface Sampling with Point Cloud Generation [6.506009070668646]
本稿では,NeRFのレンダリング品質を向上させるため,表面近傍のサンプリングフレームワークを提案する。
新たな視点の深度情報を得るために,3次元点雲生成法と点雲から投影された深度を簡易に精錬する方法を提案する。
論文 参考訳(メタデータ) (2023-10-06T10:55:34Z) - Multi-Space Neural Radiance Fields [74.46513422075438]
既存のニューラルレージアンス場(NeRF)法は反射物体の存在に悩まされている。
並列部分空間における特徴場の群を用いてシーンを表現するマルチスペースニューラルレイディアンス場(MS-NeRF)を提案する。
提案手法は,高品質シーンのレンダリングにおいて,既存の単一空間NeRF法よりも優れていた。
論文 参考訳(メタデータ) (2023-05-07T13:11:07Z) - Cascaded and Generalizable Neural Radiance Fields for Fast View
Synthesis [35.035125537722514]
ビュー合成のためのカスケードおよび一般化可能なニューラル放射場法であるCG-NeRFを提案する。
DTUデータセットの複数の3DシーンでCG-NeRFをトレーニングする。
CG-NeRFは、様々な合成および実データに対して、最先端の一般化可能なニューラルネットワークレンダリング手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-09T12:23:48Z) - AdaNeRF: Adaptive Sampling for Real-time Rendering of Neural Radiance
Fields [8.214695794896127]
新たなビュー合成は、スパース観測から直接神経放射場を学習することで、近年革新されている。
この新たなパラダイムによる画像のレンダリングは、ボリュームレンダリング方程式の正確な4分の1は、各光線に対して大量のサンプルを必要とするため、遅い。
本稿では,必要なサンプル点数を最大限に削減する方法を学習し,方向性を示す新しいデュアルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-07-21T05:59:13Z) - R2L: Distilling Neural Radiance Field to Neural Light Field for
Efficient Novel View Synthesis [76.07010495581535]
一つのピクセルをレンダリングするには、数百回もNeural Radiance Fieldネットワークに問い合わせる必要がある。
NeLFは、新しい視点において、NeRFに対してより直接的な表現を提示する。
ディープNeLFネットワークをうまく学習する鍵は、十分なデータを持つことである。
論文 参考訳(メタデータ) (2022-03-31T17:57:05Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
ニューラルレイディアンス場(NeRF)法は目覚ましい新しいビュー合成を実証している。
この作業では、バニラ粗大なアプローチの明確な制限に対処します -- パフォーマンスに基づいており、手元にあるタスクのエンドツーエンドをトレーニングしていません。
我々は、サンプルの提案と、そのネットワークにおける重要性を学習し、そのニューラルネットワークアーキテクチャに対する複数の代替案を検討し比較する、微分可能なモジュールを導入する。
論文 参考訳(メタデータ) (2021-06-09T17:59:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。