論文の概要: Deep Measurement Updates for Bayes Filters
- arxiv url: http://arxiv.org/abs/2112.00380v1
- Date: Wed, 1 Dec 2021 10:00:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-02 14:41:19.152034
- Title: Deep Measurement Updates for Bayes Filters
- Title(参考訳): ベイズフィルタの深部計測更新
- Authors: Johannes Pankert, Maria Vittoria Minniti, Lorenz Wellhausen, Marco
Hutter
- Abstract要約: 本稿では,多種多様なシステムに対する一般的な更新ルールとして,Deep Measurement Update (DMU)を提案する。
DMUは、深度画像を生の入力として処理する条件付きエンコーダ・デコーダニューラルネットワーク構造を持つ。
情報ボトルネックに頼らずに条件変数に敏感なDMUモデルを効率的に訓練する方法を実証する。
- 参考スコア(独自算出の注目度): 5.059735037931382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Measurement update rules for Bayes filters often contain hand-crafted
heuristics to compute observation probabilities for high-dimensional sensor
data, like images. In this work, we propose the novel approach Deep Measurement
Update (DMU) as a general update rule for a wide range of systems. DMU has a
conditional encoder-decoder neural network structure to process depth images as
raw inputs. Even though the network is trained only on synthetic data, the
model shows good performance at evaluation time on real-world data. With our
proposed training scheme primed data training , we demonstrate how the DMU
models can be trained efficiently to be sensitive to condition variables
without having to rely on a stochastic information bottleneck. We validate the
proposed methods in multiple scenarios of increasing complexity, beginning with
the pose estimation of a single object to the joint estimation of the pose and
the internal state of an articulated system. Moreover, we provide a benchmark
against Articulated Signed Distance Functions(A-SDF) on the RBO dataset as a
baseline comparison for articulation state estimation.
- Abstract(参考訳): ベイズフィルタの計測更新規則は、画像のような高次元センサーデータに対する観測確率を計算するために手作りのヒューリスティックを含むことが多い。
本研究では,多種多様なシステムに対する一般的な更新ルールとして,DMU(Deep Measurement Update)を提案する。
DMUは、深度画像を生入力として処理する条件付きエンコーダデコーダニューラルネットワーク構造を有する。
ネットワークは合成データのみに基づいてトレーニングされているが、実世界データの評価時に優れた性能を示す。
提案手法である primed data training を用いて,dmuモデルが確率的情報ボトルネックに依存することなく,条件変数に敏感になるように効率的にトレーニングできることを実証する。
提案手法は,単一物体のポーズ推定から,ポーズ推定と構音系の内部状態の同時推定まで,複雑性が増大する複数のシナリオで検証する。
さらに,RBOデータセット上のArticulated Signed Distance Function(A-SDF)に対して,調音状態推定のベースライン比較としてベンチマークを行う。
関連論文リスト
- TanDepth: Leveraging Global DEMs for Metric Monocular Depth Estimation in UAVs [5.6168844664788855]
本研究は,推定時間における相対的推定値から計量深度値を求めるための,実践的なオンラインスケール回復手法であるTanDepthを提案する。
本手法は無人航空機(UAV)の用途に応用され,GDEM(Global Digital Elevation Models)のスパース計測をカメラビューに投影することで活用する。
推定深度マップから接地点を選択して、投影された基準点と相関するクラスシミュレーションフィルタへの適応を示す。
論文 参考訳(メタデータ) (2024-09-08T15:54:43Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
教師なし学習の最近の進歩は、下流タスクにおける有望な結果を達成するための大きな視覚モデルの可能性を示している。
このような事前学習技術は、大量の未学習データが利用可能であることから、リモートセンシング領域でも最近研究されている。
本稿では,マルチモーダルで効果的に活用されるマルチスケール情報の事前学習と活用について述べる。
論文 参考訳(メタデータ) (2024-03-08T16:18:04Z) - Metrically Scaled Monocular Depth Estimation through Sparse Priors for
Underwater Robots [0.0]
三角特徴量からのスパース深度測定を融合して深度予測を改善する深度学習モデルを定式化する。
このネットワークは、前方に見える水中データセットFLSeaで教師ありの方法で訓練されている。
この方法は、ラップトップGPUで160FPS、単一のCPUコアで7FPSで実行することで、リアルタイムのパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-10-25T16:32:31Z) - Consensus-Adaptive RANSAC [104.87576373187426]
本稿では,パラメータ空間の探索を学習する新しいRANSACフレームワークを提案する。
注意機構は、ポイント・ツー・モデル残差のバッチで動作し、軽量のワンステップ・トランスフォーマーで見いだされたコンセンサスを考慮するために、ポイント・ツー・モデル推定状態を更新する。
論文 参考訳(メタデータ) (2023-07-26T08:25:46Z) - Neural Enhanced Belief Propagation for Multiobject Tracking [8.228150100178983]
モデルベースとデータ駆動型MOTを組み合わせたBPの変種を紹介する。
NEBP法はモデルベース法と比較して追跡性能が向上する。
nuScenes 自律運転データセット上でのMOTに対するNEBP手法の性能評価を行った。
論文 参考訳(メタデータ) (2022-12-16T08:31:07Z) - iSDF: Real-Time Neural Signed Distance Fields for Robot Perception [64.80458128766254]
iSDFは実時間符号付き距離場再構成のための連続学習システムである。
より正確な再構築と、衝突コストと勾配のより良い近似を生成する。
論文 参考訳(メタデータ) (2022-04-05T15:48:39Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
カラー画像から高密度深度マップとそれに伴うスパース深度測定を推定する手法を提案する。
正規化とコビジュアライゼーションは、モデルの適合度とデータによって関連付けられており、単一のフレームワークに統合可能であることを示す。
論文 参考訳(メタデータ) (2021-06-06T02:27:55Z) - Locally Aware Piecewise Transformation Fields for 3D Human Mesh
Registration [67.69257782645789]
本論文では,3次元変換ベクトルを学習し,提案空間内の任意のクエリ点をリザーブ空間内の対応する位置にマップする部分変換場を提案する。
パラメトリックモデルにネットワークのポーズを合わせることで、特に極端なポーズにおいて、より優れた登録品質が得られることを示す。
論文 参考訳(メタデータ) (2021-04-16T15:16:09Z) - TLIO: Tight Learned Inertial Odometry [43.17991168599939]
IMUのみの状態推定のための密結合拡張カルマンフィルタフレームワークを提案する。
ヘッドセットからの歩行者データでトレーニングされた我々のネットワークは、統計的に一貫した測定と不確実性を生み出すことができる。
論文 参考訳(メタデータ) (2020-07-06T03:13:34Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。