論文の概要: Dyadic Human Motion Prediction
- arxiv url: http://arxiv.org/abs/2112.00396v1
- Date: Wed, 1 Dec 2021 10:30:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-02 14:33:11.710436
- Title: Dyadic Human Motion Prediction
- Title(参考訳): 人の動作予測
- Authors: Isinsu Katircioglu, Costa Georgantas, Mathieu Salzmann, Pascal Fua
- Abstract要約: 本稿では,2つの被験者の相互作用を明示的に推論する動き予測フレームワークを提案する。
具体的には,2つの被験者の運動履歴の相互依存をモデル化する一対の注意機構を導入する。
これにより、より現実的な方法で長期の運動力学を保ち、異常かつ高速な運動を予測することができる。
- 参考スコア(独自算出の注目度): 119.3376964777803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prior work on human motion forecasting has mostly focused on predicting the
future motion of single subjects in isolation from their past pose sequence. In
the presence of closely interacting people, however, this strategy fails to
account for the dependencies between the different subject's motions. In this
paper, we therefore introduce a motion prediction framework that explicitly
reasons about the interactions of two observed subjects. Specifically, we
achieve this by introducing a pairwise attention mechanism that models the
mutual dependencies in the motion history of the two subjects. This allows us
to preserve the long-term motion dynamics in a more realistic way and more
robustly predict unusual and fast-paced movements, such as the ones occurring
in a dance scenario. To evaluate this, and because no existing motion
prediction datasets depict two closely-interacting subjects, we introduce the
LindyHop600K dance dataset. Our results evidence that our approach outperforms
the state-of-the-art single person motion prediction techniques.
- Abstract(参考訳): 人間の動き予測に関する以前の研究は、主に過去のポーズシーケンスから切り離された単一被験者の将来の動きを予測することに焦点を当てていた。
しかし、密接な相互作用のある人物の存在下では、この戦略は異なる被験者の動き間の依存関係を考慮できない。
そこで本稿では,二つの観察対象の相互作用を明示的に理由づける運動予測フレームワークを提案する。
具体的には,2つの被験者の運動履歴の相互依存をモデル化する一対の注意機構を導入する。
これにより、より現実的な方法で長期的な動きのダイナミクスを保ち、ダンスシナリオで発生するような異常で速い動きをより堅牢に予測することができる。
これを評価するため、既存の動き予測データセットには2つの密接に相互作用する主題が描かれていないため、lindyhop600kダンスデータセットを紹介する。
提案手法は,最先端のひとり称動作予測技術より優れていることを示す。
関連論文リスト
- MDMP: Multi-modal Diffusion for supervised Motion Predictions with uncertainty [7.402769693163035]
本稿では,運動予測のための多モード拡散モデルを提案する。
骨格データと行動のテキスト記述を統合し、定量性のある不確実性を伴う洗練された長期動作予測を生成する。
我々のモデルは、長期動作を正確に予測する上で、既存の生成技術よりも一貫して優れている。
論文 参考訳(メタデータ) (2024-10-04T18:49:00Z) - SPOTR: Spatio-temporal Pose Transformers for Human Motion Prediction [12.248428883804763]
3次元人間の動き予測は、コンピュータビジョンにおける高い重要性と課題を計算した研究領域である。
伝統的に、自己回帰モデルは人間の動きを予測するために用いられてきた。
人間の動作予測のための非自己回帰モデルを提案する。
論文 参考訳(メタデータ) (2023-03-11T01:44:29Z) - Weakly-supervised Action Transition Learning for Stochastic Human Motion
Prediction [81.94175022575966]
動作駆動型人間の動作予測の課題について紹介する。
一連の動作ラベルと短い動作履歴から、複数の可算な将来の動作を予測することを目的としている。
論文 参考訳(メタデータ) (2022-05-31T08:38:07Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
歴史的ポーズシーケンスから人間の動きを予測することは、機械が人間と知的な相互作用を成功させるために不可欠である。
本研究では,様々なポーズ表現に関する詳細な研究を行い,その動作予測課題に対する効果に着目した。
AHMR(Attentive Hierarchical Motion Recurrent Network)と呼ばれる新しいRNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-30T10:45:22Z) - Generating Smooth Pose Sequences for Diverse Human Motion Prediction [90.45823619796674]
本稿では,多様な動作予測と制御可能な動作予測のための統合された深部生成ネットワークを提案する。
標準ベンチマークデータセットであるHuman3.6MとHumanEva-Iの2つの実験は、我々のアプローチがサンプルの多様性と精度の両方において最先端のベースラインより優れていることを示した。
論文 参考訳(メタデータ) (2021-08-19T00:58:00Z) - RAIN: Reinforced Hybrid Attention Inference Network for Motion
Forecasting [34.54878390622877]
本稿では,ハイブリットアテンション機構に基づく動的キー情報の選択とランク付けを行う汎用的な動き予測フレームワークを提案する。
このフレームワークは、マルチエージェント軌道予測と人間の動き予測タスクを処理するためにインスタンス化される。
我々は,異なる領域における合成シミュレーションと運動予測ベンチマークの両方について,その枠組みを検証した。
論文 参考訳(メタデータ) (2021-08-03T06:30:30Z) - Long Term Motion Prediction Using Keyposes [122.22758311506588]
長期的な予測を達成するには、瞬時に人間のポーズを予測する必要があると論じている。
このようなポーズを「キーポス」と呼び、後続のキーポスを線形に補間して近似する複素運動と呼ぶ。
このようなキープレースのシーケンスを学習することで,将来的には最大5秒まで,非常に長期にわたる動作を予測できることが示される。
論文 参考訳(メタデータ) (2020-12-08T20:45:51Z) - History Repeats Itself: Human Motion Prediction via Motion Attention [81.94175022575966]
注意に基づくフィードフォワードネットワークを導入し、人間の動きが自分自身を繰り返す傾向にあるという観察を明示的に活用する。
特に,現在動きのコンテキストと過去の動きのサブシーケンスの類似性を捉えるために,動きの注意を抽出することを提案する。
我々は,Human3.6M,AMASS,3DPWを用いて,周期的および非周期的両方の行動に対するアプローチの利点を実証した。
論文 参考訳(メタデータ) (2020-07-23T02:12:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。