論文の概要: Effective and efficient structure learning with pruning and model
averaging strategies
- arxiv url: http://arxiv.org/abs/2112.00398v1
- Date: Wed, 1 Dec 2021 10:35:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-02 13:35:33.976450
- Title: Effective and efficient structure learning with pruning and model
averaging strategies
- Title(参考訳): プルーニングとモデル平均化戦略による効率的かつ効率的な構造学習
- Authors: Anthony C. Constantinou, Yang Liu, Neville K. Kitson, Kiattikun
Chobtham, Zhigao Guo
- Abstract要約: 本稿では,2つの新しい手法と丘登り探索を組み合わせたBN構造学習アルゴリズムについて述べる。
アルゴリズムは探索空間グラフをプルーニングすることから始まり、プルーニング戦略をプルーニング戦略のアグレッシブバージョンと見なすことができる。
そして、ヒルクライミング探索プロセスで平均化を行い、目的関数を最大化する近隣グラフに移動する。
- 参考スコア(独自算出の注目度): 9.023722579074734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning the structure of a Bayesian Network (BN) with score-based solutions
involves exploring the search space of possible graphs and moving towards the
graph that maximises a given objective function. Some algorithms offer exact
solutions that guarantee to return the graph with the highest objective score,
while others offer approximate solutions in exchange for reduced computational
complexity. This paper describes an approximate BN structure learning
algorithm, which we call Model Averaging Hill-Climbing (MAHC), that combines
two novel strategies with hill-climbing search. The algorithm starts by pruning
the search space of graphs, where the pruning strategy can be viewed as an
aggressive version of the pruning strategies that are typically applied to
combinatorial optimisation structure learning problems. It then performs model
averaging in the hill-climbing search process and moves to the neighbouring
graph that maximises the objective function, on average, for that neighbouring
graph and over all its valid neighbouring graphs. Comparisons with other
algorithms spanning different classes of learning suggest that the combination
of aggressive pruning with model averaging is both effective and efficient,
particularly in the presence of data noise.
- Abstract(参考訳): スコアベースの解を持つベイズネットワーク(BN)の構造を学ぶには、可能なグラフの探索空間を探索し、与えられた目的関数を最大化するグラフへ移動する必要がある。
一部のアルゴリズムは、最も客観的なスコアでグラフを返すことを保証する厳密な解を提供し、他のアルゴリズムは計算複雑性の低減と引き換えに近似解を提供する。
本稿では,2つの新しい戦略とヒルクライミング探索を組み合わせたモデル平均ヒルクライミング(mahc)と呼ぶ近似bn構造学習アルゴリズムについて述べる。
アルゴリズムはグラフの探索空間を刈り取ることから始まり、そこでは刈り取り戦略を、組合せ最適化構造学習問題に典型的に適用される打抜き戦略の攻撃バージョンと見なすことができる。
そして、丘を登る探索過程において平均化を行い、その隣接するグラフと有効なすべてのグラフに対して、平均して目的関数を最大化する近隣グラフに移動する。
異なる学習クラスにまたがる他のアルゴリズムとの比較から、アグレッシブな刈り取りとモデル平均化の組み合わせは、特にデータノイズの存在下では効率的かつ効率的であることが示唆される。
関連論文リスト
- Bayesian Optimization of Functions over Node Subsets in Graphs [14.670181702535825]
グラフ上での最適化のための新しいフレームワークを提案する。
元のグラフの各$k$-nodeを、新しいグラフのノードにマップします。
人工環境と実環境環境の両方における実験により,提案したBOフレームワークの有効性が示された。
論文 参考訳(メタデータ) (2024-05-24T00:24:55Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - Learning Heuristics for the Maximum Clique Enumeration Problem Using Low
Dimensional Representations [0.0]
本稿では,最大列挙問題の傾きを低減するために,入力グラフのプルーニング処理に学習フレームワークを用いる。
本手法の性能評価において,異なる頂点表現を用いることが果たす役割について検討する。
分類過程において局所的なグラフ特徴を用いることで,特徴の除去過程と組み合わせることで,より正確な結果が得られることが観察された。
論文 参考訳(メタデータ) (2022-10-30T22:04:32Z) - Subgraph Matching via Query-Conditioned Subgraph Matching Neural
Networks and Bi-Level Tree Search [33.9052190473029]
サブグラフマッチングは、グラフデータベース検索、バイオメディカル分析、ソーシャルグループ検索などにおける中核的な操作である。
本稿では,クエリと対象グラフのマッチング情報を動的に計算する,新しいエンコーダ・デコーダニューラルネットワークアーキテクチャを提案する。
5つの大きな実世界のターゲットグラフの実験により、N-BLSはサブグラフマッチング性能を大幅に改善できることが示された。
論文 参考訳(メタデータ) (2022-07-21T04:47:21Z) - Sublinear Algorithms for Hierarchical Clustering [14.124026862687941]
本稿では,3つの線形計算モデルに基づく大規模グラフの階層クラスタリングについて検討する。
すべてのモデルにおいて階層クラスタリングのためのサブ線形アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-06-15T16:25:27Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - A Differentiable Approach to Combinatorial Optimization using Dataless
Neural Networks [20.170140039052455]
我々は、ソリューションを生成するニューラルネットワークのトレーニングにデータを必要としないという、根本的に異なるアプローチを提案する。
特に、最適化問題をニューラルネットワークに還元し、データレストレーニングスキームを用いて、それらのパラメータが関心の構造をもたらすように、ネットワークのパラメータを洗練する。
論文 参考訳(メタデータ) (2022-03-15T19:21:31Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
グラフマッチングアルゴリズムは、クエリグラフの埋め込みをデータグラフGに列挙する。
マッチング順序は、これらのバックトラックに基づくサブグラフマッチングアルゴリズムの時間効率において重要な役割を果たす。
本稿では,Reinforcement Learning (RL) と Graph Neural Networks (GNN) 技術を適用して,グラフマッチングアルゴリズムの高品質なマッチング順序を生成する。
論文 参考訳(メタデータ) (2022-01-25T00:10:03Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
本稿では,2つの世界の長所を結合するハイブリッドな手法を提案する。この手法では,グラフを最適化する上層学習手法とバイレベルフレームワークを開発する。
このような二段階のアプローチは、元のハードCOでの学習を単純化し、モデルキャパシティの需要を効果的に軽減することができる。
論文 参考訳(メタデータ) (2021-06-09T09:18:18Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
データの局所構造とグローバル構造の両方を保存するためのグラフ学習フレームワークを提案する。
本手法は, サンプルの自己表現性を利用して, 局所構造を尊重するために, 大域的構造と適応的隣接アプローチを捉える。
我々のモデルは、ある条件下でのカーネルk平均法とk平均法の組合せと等価である。
論文 参考訳(メタデータ) (2020-08-31T08:41:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。