論文の概要: A benchmark with decomposed distribution shifts for 360 monocular depth
estimation
- arxiv url: http://arxiv.org/abs/2112.00432v1
- Date: Wed, 1 Dec 2021 11:48:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-02 13:59:26.127799
- Title: A benchmark with decomposed distribution shifts for 360 monocular depth
estimation
- Title(参考訳): 360度単眼深度推定のための分解分布シフト付きベンチマーク
- Authors: Georgios Albanis, Nikolaos Zioulis, Petros Drakoulis, Federico
Alvarez, Dimitrios Zarpalas, Petros Daras
- Abstract要約: 我々は,コンピュータビジョンタスクの分布シフトベンチマーク,単眼深度推定に貢献する。
当社の差別化は、非制御テストの非制御データのより広範な分布シフトを3つの異なる分布シフトに分解することである。
- 参考スコア(独自算出の注目度): 22.893165951086953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we contribute a distribution shift benchmark for a computer
vision task; monocular depth estimation. Our differentiation is the
decomposition of the wider distribution shift of uncontrolled testing on
in-the-wild data, to three distinct distribution shifts. Specifically, we
generate data via synthesis and analyze them to produce covariate (color
input), prior (depth output) and concept (their relationship) distribution
shifts. We also synthesize combinations and show how each one is indeed a
different challenge to address, as stacking them produces increased performance
drops and cannot be addressed horizontally using standard approaches.
- Abstract(参考訳): 本研究では,コンピュータビジョンタスクのための分布シフトベンチマークである単眼深度推定を提案する。
当社の差別化は、非制御テストの非制御データのより広範な分布シフトを3つの異なる分布シフトに分解することである。
具体的には,合成によるデータ生成と分析を行い,共変量(カラー入力),事前(ディープアウトプット),概念(テーマリレーションシップ)分布シフトを生成する。
コンビネーションを合成し、それらを積み重ねることでパフォーマンスが低下し、標準のアプローチでは水平に対処できないため、各コンビネーションが実際に対処すべき課題であることを示すことも行います。
関連論文リスト
- Efficient Distribution Matching of Representations via Noise-Injected Deep InfoMax [73.03684002513218]
我々はDeep InfoMax(DIM)を拡張し、学習した表現を選択された事前分布に自動マッチングできるようにする。
このような修正により、一様かつ通常に分散した表現を学習できることを示す。
その結果,下流作業における性能とDMの品質の中間的なトレードオフが示唆された。
論文 参考訳(メタデータ) (2024-10-09T15:40:04Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Deep Generative Sampling in the Dual Divergence Space: A Data-efficient & Interpretative Approach for Generative AI [29.13807697733638]
自然画像の生成的サンプリングにおける顕著な成果の上に構築する。
我々は、画像に似たサンプルを生成するという、画期的な挑戦を、潜在的に過度に野心的に提案する。
統計上の課題は、小さなサンプルサイズであり、時には数百人の被験者で構成されている。
論文 参考訳(メタデータ) (2024-04-10T22:35:06Z) - Proxy Methods for Domain Adaptation [78.03254010884783]
プロキシ変数は、遅延変数を明示的にリカバリしたりモデル化したりすることなく、分散シフトへの適応を可能にする。
両設定の複雑な分散シフトに適応する2段階のカーネル推定手法を開発した。
論文 参考訳(メタデータ) (2024-03-12T09:32:41Z) - Rethinking Polyp Segmentation from an Out-of-Distribution Perspective [37.1338930936671]
マスク付き自己エンコーダ(再建作業で訓練された自己教師型視覚トランスフォーマー)を応用して,分布内表現を学習する。
種々の異常サンプルの潜伏分布と健常サンプルの統計値とを一致させるため,特徴空間の標準化を図り,アウト・オブ・ディストリビューションの再構築と推論を行った。
6つのベンチマークによる実験結果から,我々のモデルはセグメンテーション性能とデータセット間の一般化に優れていた。
論文 参考訳(メタデータ) (2023-06-13T14:13:16Z) - Synthetic-to-Real Domain Generalized Semantic Segmentation for 3D Indoor
Point Clouds [69.64240235315864]
本稿では,本課題に対して,合成-実領域一般化設定を提案する。
合成と実世界のポイントクラウドデータのドメインギャップは、主に異なるレイアウトとポイントパターンにあります。
CINMixとMulti-prototypeの両方が分配ギャップを狭めることを示した。
論文 参考訳(メタデータ) (2022-12-09T05:07:43Z) - Structured Uncertainty in the Observation Space of Variational
Autoencoders [20.709989481734794]
画像合成において、そのような分布からのサンプリングは、非相関な画素ノイズを伴う空間的非コヒーレントな結果を生成する。
低ランクパラメータ化により空間依存性を符号化する観測空間の代替モデルを提案する。
画素単位の独立分布とは対照的に,本サンプルは複数の可算出力の予測を可能にする平均値から意味論的に有意な変動を含むと考えられる。
論文 参考訳(メタデータ) (2022-05-25T07:12:50Z) - Investigating Shifts in GAN Output-Distributions [5.076419064097734]
本稿では,実学習データとGAN生成データの分布の可観測的変化を系統的に調査するためのループ学習手法を提案する。
全体として、これらの手法を組み合わせることで、現在のGANアルゴリズムの自然的制限を爆発的に調査することができる。
論文 参考訳(メタデータ) (2021-12-28T09:16:55Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
深層学習の成功に基づいて、GAN(Generative Adversarial Networks)は、観測されたサンプルから確率分布を学習するための現代的なアプローチを提供する。
GANはしばしば、ジェネレータが入力分布の既存のすべてのモードをキャプチャできないモード崩壊問題に悩まされる。
情報理論のアプローチを採り、生成したサンプルのエントロピーの変動的下限を最大化し、それらの多様性を増大させる。
論文 参考訳(メタデータ) (2020-09-24T19:34:37Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
GAN(Generative Adversarial Network)の学習安定性はいまだに悩みの種である
本稿では,判別器のための関係ネットワークアーキテクチャについて検討し,より優れた一般化と安定性を実現する三重項損失を設計する。
ベンチマークデータセットの実験により、提案された関係判別器と新たな損失は、可変視覚タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-24T11:35:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。