論文の概要: Investigating Shifts in GAN Output-Distributions
- arxiv url: http://arxiv.org/abs/2112.14061v1
- Date: Tue, 28 Dec 2021 09:16:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-31 04:15:24.591548
- Title: Investigating Shifts in GAN Output-Distributions
- Title(参考訳): GAN出力流通における変化の調査
- Authors: Ricard Durall, Janis Keuper
- Abstract要約: 本稿では,実学習データとGAN生成データの分布の可観測的変化を系統的に調査するためのループ学習手法を提案する。
全体として、これらの手法を組み合わせることで、現在のGANアルゴリズムの自然的制限を爆発的に調査することができる。
- 参考スコア(独自算出の注目度): 5.076419064097734
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: A fundamental and still largely unsolved question in the context of
Generative Adversarial Networks is whether they are truly able to capture the
real data distribution and, consequently, to sample from it. In particular, the
multidimensional nature of image distributions leads to a complex evaluation of
the diversity of GAN distributions. Existing approaches provide only a partial
understanding of this issue, leaving the question unanswered. In this work, we
introduce a loop-training scheme for the systematic investigation of observable
shifts between the distributions of real training data and GAN generated data.
Additionally, we introduce several bounded measures for distribution shifts,
which are both easy to compute and to interpret. Overall, the combination of
these methods allows an explorative investigation of innate limitations of
current GAN algorithms. Our experiments on different data-sets and multiple
state-of-the-art GAN architectures show large shifts between input and output
distributions, showing that existing theoretical guarantees towards the
convergence of output distributions appear not to be holding in practice.
- Abstract(参考訳): Generative Adversarial Networksの文脈における基本的な、そしてまだ解決されていない質問は、実際に実際のデータ分布をキャプチャでき、その結果、それからサンプリングできるかどうかである。
特に、画像分布の多次元的性質は、GAN分布の多様性の複雑な評価につながる。
既存のアプローチはこの問題を部分的に理解するだけで、疑問は答えられていない。
本研究では,実トレーニングデータの分布とgan生成データとの可観測シフトを体系的に検討するためのループトレーニングスキームを提案する。
さらに,計算や解釈が容易な分布シフトに対して,いくつかの有界測度を導入する。
全体として、これらの手法の組み合わせは、現在のganアルゴリズムの固有限界の探索的調査を可能にする。
異なるデータ集合と複数の最先端GANアーキテクチャに関する実験は、入力分布と出力分布の大きなシフトを示し、出力分布の収束に対する既存の理論的保証が実際に保持されていないことを示す。
関連論文リスト
- Generative Assignment Flows for Representing and Learning Joint Distributions of Discrete Data [2.6499018693213316]
本稿では,多数の離散確率変数の結合確率分布を表現するための新しい生成モデルを提案する。
全ての離散な関節分布のメタ・プレプレックスにおけるセグレ写像による流れの埋め込みは、任意の対象分布を原理的に表すことができることを保証している。
我々のアプローチは、結合された離散変数のモデリングの第一原理から強い動機を持っている。
論文 参考訳(メタデータ) (2024-06-06T21:58:33Z) - Generative Modeling of Discrete Joint Distributions by E-Geodesic Flow
Matching on Assignment Manifolds [0.8594140167290099]
一般の非分解離散分布は、部分多様体をすべての合同離散分布のメタプレプレックスに埋め込むことで近似することができる。
離散分布を分解する測地線の流れをマッチングすることにより、生成モデルの効率的な訓練を実演する。
論文 参考訳(メタデータ) (2024-02-12T17:56:52Z) - Variational DAG Estimation via State Augmentation With Stochastic Permutations [16.57658783816741]
ベイズネットワークの構造を観測データから推定することは統計的かつ計算的に難しい問題である。
確率的推論の観点から、主な課題は(i) DAG 制約を満たすグラフ上の分布を表すこと、(ii) 基礎空間上の後方を推定することである。
そこで本稿では,DAGと置換の強化空間上に共同分布を定式化することにより,これらの課題に対処するアプローチを提案する。
論文 参考訳(メタデータ) (2024-02-04T23:51:04Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Distribution Shift Inversion for Out-of-Distribution Prediction [57.22301285120695]
本稿では,OoD(Out-of-Distribution)予測のためのポータブル分布シフト変換アルゴリズムを提案する。
提案手法は,OoDアルゴリズムを広範囲に接続した場合に,一般的な性能向上をもたらすことを示す。
論文 参考訳(メタデータ) (2023-06-14T08:00:49Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
我々は、不均一(非IID)で多くのデバイスに分散する問題データを持つ領域上での分散変分不等式(VIs)を考察する。
我々は、完全に分散化された計算の設定を網羅する計算ネットワークについて、非常に一般的な仮定を行う。
理論的には, モノトン, モノトンおよび非モノトンセッティングにおける収束速度を理論的に解析する。
論文 参考訳(メタデータ) (2021-06-15T17:45:51Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Global Distance-distributions Separation for Unsupervised Person
Re-identification [93.39253443415392]
既存の教師なしのReIDアプローチは、距離ベースのマッチング/ランク付けを通じて正のサンプルと負のサンプルを正しく識別するのに失敗することが多い。
本研究では,2つの分布に対する大域的距離分布分離の制約を導入し,大域的視点から正と負のサンプルを明確に分離することを奨励する。
本研究では,本手法がベースラインを大幅に改善し,最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2020-06-01T07:05:39Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
GAN(Generative Adversarial Network)の学習安定性はいまだに悩みの種である
本稿では,判別器のための関係ネットワークアーキテクチャについて検討し,より優れた一般化と安定性を実現する三重項損失を設計する。
ベンチマークデータセットの実験により、提案された関係判別器と新たな損失は、可変視覚タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-24T11:35:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。