Empirical evaluation of shallow and deep learning classifiers for Arabic
sentiment analysis
- URL: http://arxiv.org/abs/2112.00534v1
- Date: Wed, 1 Dec 2021 14:45:43 GMT
- Title: Empirical evaluation of shallow and deep learning classifiers for Arabic
sentiment analysis
- Authors: Ali Bou Nassif, Abdollah Masoud Darya, Ashraf Elnagar
- Abstract summary: This work presents a detailed comparison of the performance of deep learning models for sentiment analysis of Arabic reviews.
The datasets used in this study are multi-dialect Arabic hotel and book review datasets, which are some of the largest publicly available datasets for Arabic reviews.
Results showed deep learning outperforming shallow learning for binary and multi-label classification, in contrast with the results of similar work reported in the literature.
- Score: 1.1172382217477126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a detailed comparison of the performance of deep learning
models such as convolutional neural networks (CNN), long short-term memory
(LSTM), gated recurrent units (GRU), their hybrids, and a selection of shallow
learning classifiers for sentiment analysis of Arabic reviews. Additionally,
the comparison includes state-of-the-art models such as the transformer
architecture and the araBERT pre-trained model. The datasets used in this study
are multi-dialect Arabic hotel and book review datasets, which are some of the
largest publicly available datasets for Arabic reviews. Results showed deep
learning outperforming shallow learning for binary and multi-label
classification, in contrast with the results of similar work reported in the
literature. This discrepancy in outcome was caused by dataset size as we found
it to be proportional to the performance of deep learning models. The
performance of deep and shallow learning techniques was analyzed in terms of
accuracy and F1 score. The best performing shallow learning technique was
Random Forest followed by Decision Tree, and AdaBoost. The deep learning models
performed similarly using a default embedding layer, while the transformer
model performed best when augmented with araBERT.
Related papers
- Modern Neighborhood Components Analysis: A Deep Tabular Baseline Two Decades Later [59.88557193062348]
We revisit the classic Neighborhood Component Analysis (NCA), designed to learn a linear projection that captures semantic similarities between instances.
We find that minor modifications, such as adjustments to the learning objectives and the integration of deep learning architectures, significantly enhance NCA's performance.
We also introduce a neighbor sampling strategy that improves both the efficiency and predictive accuracy of our proposed ModernNCA.
arXiv Detail & Related papers (2024-07-03T16:38:57Z) - Enhancing Sentiment Analysis Results through Outlier Detection
Optimization [0.5439020425819]
This study investigates the potential of identifying and addressing outliers in text data with subjective labels.
We utilize the Deep SVDD algorithm, a one-class classification method, to detect outliers in nine text-based emotion and sentiment analysis datasets.
arXiv Detail & Related papers (2023-11-25T18:20:43Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - An Information-Theoretic Analysis of Compute-Optimal Neural Scaling Laws [24.356906682593532]
We study the compute-optimal trade-off between model and training data set sizes for large neural networks.
Our result suggests a linear relation similar to that supported by the empirical analysis of chinchilla.
arXiv Detail & Related papers (2022-12-02T18:46:41Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Deep Learning Models for Knowledge Tracing: Review and Empirical
Evaluation [2.423547527175807]
We review and evaluate a body of deep learning knowledge tracing (DLKT) models with openly available and widely-used data sets.
The evaluated DLKT models have been reimplemented for assessing and replicability of previously reported results.
arXiv Detail & Related papers (2021-12-30T14:19:27Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - PK-GCN: Prior Knowledge Assisted Image Classification using Graph
Convolution Networks [3.4129083593356433]
Similarity between classes can influence the performance of classification.
We propose a method that incorporates class similarity knowledge into convolutional neural networks models.
Experimental results show that our model can improve classification accuracy, especially when the amount of available data is small.
arXiv Detail & Related papers (2020-09-24T18:31:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.