論文の概要: On Mixing Times of Metropolized Algorithm With Optimization Step (MAO) :
A New Framework
- arxiv url: http://arxiv.org/abs/2112.00565v1
- Date: Wed, 1 Dec 2021 15:32:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-02 18:10:38.275524
- Title: On Mixing Times of Metropolized Algorithm With Optimization Step (MAO) :
A New Framework
- Title(参考訳): 最適化ステップ(mao)を用いたmetropolized algorithmの混合時間について : 新しい枠組み
- Authors: EL Mahdi Khribch, George Deligiannidis, Daniel Paulin
- Abstract要約: 我々は$mathbbRd$でサポートされている細い尾を持つ分布のクラスからのサンプリングを検討する。
我々のアルゴリズムは、メトロポリス調整ランゲヴィンアルゴリズム(MALA)が収束しない分布や理論的保証が欠如している分布からサンプリングすることができる。
- 参考スコア(独自算出の注目度): 4.984601297028258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider sampling from a class of distributions with thin
tails supported on $\mathbb{R}^d$ and make two primary contributions. First, we
propose a new Metropolized Algorithm With Optimization Step (MAO), which is
well suited for such targets. Our algorithm is capable of sampling from
distributions where the Metropolis-adjusted Langevin algorithm (MALA) is not
converging or lacking in theoretical guarantees. Second, we derive upper bounds
on the mixing time of MAO. Our results are supported by simulations on multiple
target distributions.
- Abstract(参考訳): 本稿では,$\mathbb{r}^d$ をサポートする薄いテールを持つ分布のクラスからのサンプリングを検討し,2つの主要な貢献を行う。
まず,このような対象に適した最適化ステップ(mao)を用いた新しいmetropolizedアルゴリズムを提案する。
我々のアルゴリズムは、メトロポリス調整ランゲヴィンアルゴリズム(MALA)が収束しない分布や理論的保証がない分布からサンプリングすることができる。
第2に、MAOの混合時間に関する上限を導出する。
この結果は、複数のターゲット分布のシミュレーションによって支援される。
関連論文リスト
- Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
非log-concave分布からのサンプリングのための近位サンプリング器 (SPS) について検討した。
対象分布への収束性は,アルゴリズムの軌道が有界である限り保証可能であることを示す。
我々は、Langevin dynamics(SGLD)とLangevin-MALAの2つの実装可能な変種を提供し、SPS-SGLDとSPS-MALAを生み出した。
論文 参考訳(メタデータ) (2024-05-27T00:53:18Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Improving sample efficiency of high dimensional Bayesian optimization
with MCMC [7.241485121318798]
本稿ではマルコフ・チェイン・モンテカルロに基づく新しい手法を提案する。
提案アルゴリズムのMetropolis-HastingsとLangevin Dynamicsの両バージョンは、高次元逐次最適化および強化学習ベンチマークにおいて最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-01-05T05:56:42Z) - Symmetric Mean-field Langevin Dynamics for Distributional Minimax
Problems [78.96969465641024]
平均場ランゲヴィンのダイナミクスを、対称で証明可能な収束した更新で、初めて確率分布に対する最小の最適化に拡張する。
また,時間と粒子の離散化機構について検討し,カオス結果の新たな均一時間伝播を証明した。
論文 参考訳(メタデータ) (2023-12-02T13:01:29Z) - Gaussian Cooling and Dikin Walks: The Interior-Point Method for Logconcave Sampling [8.655526882770742]
1990年代、ネスターとネミロフスキーは自己調和障壁に基づく凸最適化のための内部点法(IPM)を開発した。
2012年、カナンとナラヤナンはポリトープを一様にサンプリングするダイキンウォークを提案した。
本稿では、多時間サンプリングアルゴリズムのためのダイキンウォークと共にIPM機械を開発し、適応させることにより、このアプローチを一般化する。
論文 参考訳(メタデータ) (2023-07-24T17:15:38Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Stochastic Approximation Approaches to Group Distributionally Robust Optimization and Beyond [89.72693227960274]
本稿では,グループ分散ロバスト最適化 (GDRO) を,$m$以上の異なる分布をうまく処理するモデルを学習する目的で検討する。
各ラウンドのサンプル数を$m$から1に抑えるため、GDROを2人でプレイするゲームとして、一方のプレイヤーが実行し、他方のプレイヤーが非公開のマルチアームバンディットのオンラインアルゴリズムを実行する。
第2のシナリオでは、最大リスクではなく、平均的最上位k$リスクを最適化し、分散の影響を軽減することを提案する。
論文 参考訳(メタデータ) (2023-02-18T09:24:15Z) - Improving multiple-try Metropolis with local balancing [0.0]
MTM(Multi-try Metropolis)はマルコフ連鎖モンテカルロ法である。
我々は,この重み関数が高次元の病理行動を引き起こすことを理論的にも経験的にも示している。
そこで本稿では,Zanella (2020) の局所平衡分布に類似した重み関数の利用を提案する。
論文 参考訳(メタデータ) (2022-11-21T16:14:17Z) - Langevin Monte Carlo for Contextual Bandits [72.00524614312002]
Langevin Monte Carlo Thompson Sampling (LMC-TS) が提案されている。
提案アルゴリズムは,文脈的帯域幅の特別な場合において,最高のトンプソンサンプリングアルゴリズムと同じサブ線形残差を達成できることを示す。
論文 参考訳(メタデータ) (2022-06-22T17:58:23Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Optimal quantisation of probability measures using maximum mean
discrepancy [10.29438865750845]
何人かの研究者は、確率測度を定量化する方法として、最大平均誤差 (MMD) の最小化を提案している。
離散的候補集合よりもMDDを優しく最小化する逐次アルゴリズムを考える。
本手法を各反復時の候補集合のミニバッチに適用する変種について検討する。
論文 参考訳(メタデータ) (2020-10-14T13:09:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。