Incomplete Multi-view Clustering via Cross-view Relation Transfer
- URL: http://arxiv.org/abs/2112.00739v1
- Date: Wed, 1 Dec 2021 14:28:15 GMT
- Title: Incomplete Multi-view Clustering via Cross-view Relation Transfer
- Authors: Yiming Wang, Dongxia Chang, Zhiqiang Fu, Yao Zhao
- Abstract summary: We propose a novel incomplete multi-view clustering framework, which incorporates cross-view relation transfer and multi-view fusion learning.
Experiments conducted on several real datasets demonstrate the effectiveness of the proposed method.
- Score: 41.17336912278538
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we consider the problem of multi-view clustering on incomplete
views. Compared with complete multi-view clustering, the view-missing problem
increases the difficulty of learning common representations from different
views. To address the challenge, we propose a novel incomplete multi-view
clustering framework, which incorporates cross-view relation transfer and
multi-view fusion learning. Specifically, based on the consistency existing in
multi-view data, we devise a cross-view relation transfer-based completion
module, which transfers known similar inter-instance relationships to the
missing view and recovers the missing data via graph networks based on the
transferred relationship graph. Then the view-specific encoders are designed to
extract the recovered multi-view data, and an attention-based fusion layer is
introduced to obtain the common representation. Moreover, to reduce the impact
of the error caused by the inconsistency between views and obtain a better
clustering structure, a joint clustering layer is introduced to optimize
recovery and clustering simultaneously. Extensive experiments conducted on
several real datasets demonstrate the effectiveness of the proposed method.
Related papers
- Unpaired Multi-View Graph Clustering with Cross-View Structure Matching [39.310384044597065]
Most existing MVC methods assume that multi-view data are fully paired, which means that the mappings of all corresponding samples between views are pre-defined or given in advance.
The data correspondence is often incomplete in real-world applications due to data corruption or sensor differences.
We propose a novel parameter-free graph clustering framework termed Unpaired Multi-view Graph Clustering framework with Cross-View Structure Matching.
arXiv Detail & Related papers (2023-07-07T09:29:44Z) - Incomplete Multi-view Clustering via Diffusion Completion [0.0]
We propose diffusion completion to recover the missing views integrated into an incomplete multi-view clustering framework.
Based on the observable views information, the diffusion model is used to recover the missing views.
The proposed method performs well in recovering the missing views while achieving superior clustering performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-19T07:39:24Z) - GCFAgg: Global and Cross-view Feature Aggregation for Multi-view
Clustering [45.530950521907265]
Multi-view clustering can partition data samples into their categories by learning a consensus representation in unsupervised way.
We propose a novel multi-view clustering network to address these problems, called Global and Cross-view Feature aggregation for Multi-View Clustering (GggMVC)
We show that the proposed method achieves excellent performance in both complete multi-view data clustering tasks and incomplete multi-view data clustering tasks.
arXiv Detail & Related papers (2023-05-11T13:41:13Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields.
We propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations.
Experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks.
arXiv Detail & Related papers (2022-11-08T09:19:32Z) - Deep Multi-View Semi-Supervised Clustering with Sample Pairwise
Constraints [10.226754903113164]
We propose a novel Deep Multi-view Semi-supervised Clustering (DMSC) method, which jointly optimize three kinds of losses during networks finetuning.
We demonstrate that our proposed approach performs better than the state-of-the-art multi-view and single-view competitors.
arXiv Detail & Related papers (2022-06-10T08:51:56Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z) - Agglomerative Neural Networks for Multi-view Clustering [109.55325971050154]
We propose the agglomerative analysis to approximate the optimal consensus view.
We present Agglomerative Neural Network (ANN) based on Constrained Laplacian Rank to cluster multi-view data directly.
Our evaluations against several state-of-the-art multi-view clustering approaches on four popular datasets show the promising view-consensus analysis ability of ANN.
arXiv Detail & Related papers (2020-05-12T05:39:10Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.