論文の概要: Generalized Closed-form Formulae for Feature-based Subpixel Alignment in Patch-based Matching
- arxiv url: http://arxiv.org/abs/2112.00941v3
- Date: Mon, 09 Dec 2024 16:35:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-11 14:33:58.584899
- Title: Generalized Closed-form Formulae for Feature-based Subpixel Alignment in Patch-based Matching
- Title(参考訳): パッチ型マッチングにおける特徴量に基づくサブピクセルアライメントのための一般化閉形式公式
- Authors: Laurent Valentin Jospin, Farid Boussaid, Hamid Laga, Mohammed Bennamoun,
- Abstract要約: 一次元マッチングの場合のサブピクセル不均一性に対する閉形式式を示す。
次に,提案式を高次元探索空間の場合に一般化する方法を示す。
- 参考スコア(独自算出の注目度): 31.8096256032235
- License:
- Abstract: Cost-based image patch matching is at the core of various techniques in computer vision, photogrammetry and remote sensing. When the subpixel disparity between the reference patch in the source and target images is required, either the cost function or the target image have to be interpolated. While cost-based interpolation is the easiest to implement, multiple works have shown that image based interpolation can increase the accuracy of the subpixel matching, but usually at the cost of expensive search procedures. This, however, is problematic, especially for very computation intensive applications such as stereo matching or optical flow computation. In this paper, we show that closed form formulae for subpixel disparity computation for the case of one dimensional matching, e.g., in the case of rectified stereo images where the search space is of one dimension, exists when using the standard NCC, SSD and SAD cost functions. We then demonstrate how to generalize the proposed formulae to the case of high dimensional search spaces, which is required for unrectified stereo matching and optical flow extraction. We also compare our results with traditional cost volume interpolation formulae as well as with state-of-the-art cost-based refinement methods, and show that the proposed formulae bring a small improvement over the state-of-the-art cost-based methods in the case of one dimensional search spaces, and a significant improvement when the search space is two dimensional.
- Abstract(参考訳): コストベースの画像パッチマッチングは、コンピュータビジョン、フォトグラム、リモートセンシングにおける様々な技術の中心にある。
ソースの参照パッチとターゲット画像のサブピクセル不一致が必要な場合、コスト関数またはターゲット画像のいずれかを補間する必要がある。
コストベースの補間は最も実装が容易であるが、複数の研究により、画像ベースの補間はサブピクセルマッチングの精度を高めることができるが、通常高価な探索手順のコストがかかることが示されている。
しかし、特にステレオマッチングや光フロー計算のような非常に計算集約的なアプリケーションでは、この問題は問題となる。
本稿では,一次元の立体画像において,一次元マッチングの場合のサブピクセル不均一性計算のための閉形式式,例えば,標準的なNCC,SSD,SADのコスト関数を用いて,探索空間が一次元の補正ステレオ画像が存在することを示す。
そこで我々は,提案式を高次元探索空間に一般化する方法を実証する。これは不整合ステレオマッチングと光フロー抽出に必要である。
また, 従来のコスト容積補間式と, 最先端のコストベース精錬法を比較し, 提案式は, 1次元探索空間の場合の最先端のコストベース手法よりも若干改善され, 探索空間が2次元の場合の大幅な改善をもたらすことを示した。
関連論文リスト
- Accelerated Sub-Image Search For Variable-Size Patches Identification Based On Virtual Time Series Transformation And Segmentation [0.0]
本論文は, 物体の所定の基準画像に対して, (i) 空中画像において特定される干し草ベールなどの固定サイズの物体と, (ii) スポットスプレーやハンドリングを必要とするフィールド上の領域などの可変サイズのパッチを, 所定の小型参照画像に対して画像中に識別する,という2つの課題に対処する。
類似のサブイメージの正確な数は、前兆とは知られていない。
論文 参考訳(メタデータ) (2024-10-20T15:43:50Z) - Memory-Efficient Optical Flow via Radius-Distribution Orthogonal Cost
Volume [6.122542233250026]
本稿では,高分解能光フロー推定のためのメモリ効率の高い新しい手法であるMeFlowを提案する。
Sintel と KITTI のベンチマークでは,高解像度入力において高いメモリ効率を維持しながら,競合性能を実現している。
論文 参考訳(メタデータ) (2023-12-06T12:43:11Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
サブピクセルレベルのHS超解像フレームワークを提案する。
名前が示すように、DC-Netはまず入力を共通(またはクロスセンサー)とセンサー固有のコンポーネントに分離する。
我々は,CSUネットの裏側に自己教師付き学習モジュールを付加し,素材の整合性を保証し,復元されたHS製品の詳細な外観を向上する。
論文 参考訳(メタデータ) (2022-05-07T23:40:36Z) - Incorporating Texture Information into Dimensionality Reduction for
High-Dimensional Images [65.74185962364211]
距離ベース次元削減手法に周辺情報を組み込む手法を提案する。
画像パッチを比較する異なる手法の分類に基づいて,様々なアプローチを探索する。
論文 参考訳(メタデータ) (2022-02-18T13:17:43Z) - SCSNet: An Efficient Paradigm for Learning Simultaneously Image
Colorization and Super-Resolution [39.77987463287673]
画像のカラー化と超解像(SCS)を同時に行うための効率的なパラダイムを提案する。
提案手法は2つの部分から構成される: プラグアンドプレイのemphPyramid Valve Cross Attention (PVCAttn)モジュールを用いた色情報学習用カラー化ブランチ。
我々のSCSNetは、実用上よりフレキシブルな自動モードと参照モードの両方をサポートしている。
論文 参考訳(メタデータ) (2022-01-12T08:59:12Z) - Spatial-Separated Curve Rendering Network for Efficient and
High-Resolution Image Harmonization [59.19214040221055]
本稿では,空間分離型曲線描画ネットワーク(S$2$CRNet)を提案する。
提案手法は従来の手法と比較して90%以上のパラメータを減少させる。
提案手法は,既存の手法よりも10ドル以上高速な高解像度画像をリアルタイムにスムーズに処理することができる。
論文 参考訳(メタデータ) (2021-09-13T07:20:16Z) - LocalTrans: A Multiscale Local Transformer Network for Cross-Resolution
Homography Estimation [52.63874513999119]
クロスレゾリューション画像アライメントは、マルチスケールギガ撮影において重要な問題である。
既存のディープ・ホモグラフィー手法は、それらの間の対応の明示的な定式化を無視し、クロスレゾリューションの課題において精度が低下する。
本稿では,マルチモーダル入力間の対応性を明確に学習するために,マルチスケール構造内に埋め込まれたローカルトランスフォーマーネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-08T02:51:45Z) - Displacement-Invariant Cost Computation for Efficient Stereo Matching [122.94051630000934]
ディープラーニング手法は、前例のない不一致の精度を得ることによって、ステレオマッチングのリーダーボードを支配してきた。
しかし、その推測時間は一般的に540p画像の秒数で遅い。
本研究では,4次元特徴量を必要としないEmphdisplacement-invariant cost moduleを提案する。
論文 参考訳(メタデータ) (2020-12-01T23:58:16Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
本稿では,一対の相補的な旅先を含むLRD画像モデルを提案する。
次に、画像CSのためのRDモデルに基づく新しいハイブリッド・プラグイン・アンド・プレイ・フレームワークを提案する。
そこで,提案したH-based image CS問題の解法として,単純で効果的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-16T08:17:44Z) - Optimized Feature Space Learning for Generating Efficient Binary Codes
for Image Retrieval [9.470008343329892]
本稿では,最小クラス内分散と最大クラス間分散を用いた低次元最適化特徴空間の学習手法を提案する。
生成した特徴ベクトルを、人気の反復量子化(ITQ)アプローチでバイナライズし、画像検索のために所望のビット長のバイナリコードを生成するアンサンブルネットワークを提案する。
論文 参考訳(メタデータ) (2020-01-30T15:30:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。