論文の概要: Deep Transfer Learning: A Novel Collaborative Learning Model for
Cyberattack Detection Systems in IoT Networks
- arxiv url: http://arxiv.org/abs/2112.00988v1
- Date: Thu, 2 Dec 2021 05:26:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-03 16:56:34.913117
- Title: Deep Transfer Learning: A Novel Collaborative Learning Model for
Cyberattack Detection Systems in IoT Networks
- Title(参考訳): ディープトランスファー学習:IoTネットワークにおけるサイバー攻撃検出システムのための新しい協調学習モデル
- Authors: Tran Viet Khoa, Dinh Thai Hoang, Nguyen Linh Trung, Cong T. Nguyen,
Tran Thi Thuy Quynh, Diep N. Nguyen, Nguyen Viet Ha and Eryk Dutkiewicz
- Abstract要約: フェデレートラーニング(FL)は近年,サイバー攻撃検知システムにおいて有効なアプローチとなっている。
FLは学習効率を改善し、通信オーバーヘッドを減らし、サイバー攻撃検知システムのプライバシーを高める。
このようなシステムにおけるFLの実装上の課題は、ラベル付きデータの可用性の欠如と、異なるIoTネットワークにおけるデータ機能の相違である。
- 参考スコア(独自算出の注目度): 17.071452978622123
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated Learning (FL) has recently become an effective approach for
cyberattack detection systems, especially in Internet-of-Things (IoT) networks.
By distributing the learning process across IoT gateways, FL can improve
learning efficiency, reduce communication overheads and enhance privacy for
cyberattack detection systems. Challenges in implementation of FL in such
systems include unavailability of labeled data and dissimilarity of data
features in different IoT networks. In this paper, we propose a novel
collaborative learning framework that leverages Transfer Learning (TL) to
overcome these challenges. Particularly, we develop a novel collaborative
learning approach that enables a target network with unlabeled data to
effectively and quickly learn knowledge from a source network that possesses
abundant labeled data. It is important that the state-of-the-art studies
require the participated datasets of networks to have the same features, thus
limiting the efficiency, flexibility as well as scalability of intrusion
detection systems. However, our proposed framework can address these problems
by exchanging the learning knowledge among various deep learning models, even
when their datasets have different features. Extensive experiments on recent
real-world cybersecurity datasets show that the proposed framework can improve
more than 40% as compared to the state-of-the-art deep learning based
approaches.
- Abstract(参考訳): フェデレートラーニング(FL)は近年,特にIoT(Internet-of-Things)ネットワークにおいて,サイバー攻撃検出システムにおいて有効なアプローチとなっている。
IoTゲートウェイに学習プロセスを分散することにより、FLは学習効率を改善し、通信オーバーヘッドを低減し、サイバー攻撃検出システムのプライバシを高めることができる。
このようなシステムにおけるFLの実装上の課題は、ラベル付きデータの可用性の欠如と、異なるIoTネットワークにおけるデータ機能の相違である。
本稿では,これらの課題を克服するためにトランスファーラーニング(TL)を活用した新しい協調学習フレームワークを提案する。
特に,ラベルのないデータを持つターゲットネットワークが,ラベル付きデータを豊富に有するソースネットワークから知識を効果的かつ迅速に学習できる,新たな協調学習手法を開発した。
最先端の研究では、参加するネットワークのデータセットが同じ特徴を持つ必要があるため、効率、柔軟性、侵入検知システムのスケーラビリティが制限される。
しかし,提案するフレームワークは,データセットに異なる特徴がある場合でも,ディープラーニングモデル間の学習知識を交換することで,これらの問題に対処できる。
最近の現実世界のサイバーセキュリティデータセットに関する広範な実験は、最先端のディープラーニングベースのアプローチと比較して、提案フレームワークが40%以上改善可能であることを示している。
関連論文リスト
- A Cutting-Edge Deep Learning Method For Enhancing IoT Security [0.0]
本稿では,Deep Learning-integrated Convolutional Neural Networks (CNN) とLong Short-Term Memory (LSTM) ネットワークを用いたモノのインターネット(IoT)環境侵入検知システム(IDS)の革新的な設計を提案する。
われわれのモデルはCICIDS 2017データセットに基づいて、ネットワークトラフィックを良性または悪意のいずれかとして分類する精度99.52%を達成した。
論文 参考訳(メタデータ) (2024-06-18T08:42:51Z) - Deep Learning Approaches for Network Traffic Classification in the
Internet of Things (IoT): A Survey [0.0]
IoT(Internet of Things)は前例のない成長を遂げ、相互接続されたデバイスからの多様なネットワークトラフィックが大量に流入している。
このネットワークトラフィックを効果的に分類することは、リソース割り当ての最適化、セキュリティ対策の強化、IoTシステムにおける効率的なネットワーク管理の確保に不可欠である。
ディープラーニングは、生データから複雑なパターンや表現を自動的に学習する能力のために、ネットワークトラフィック分類の強力なテクニックとして登場した。
論文 参考訳(メタデータ) (2024-02-01T14:33:24Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Federated Deep Learning for Intrusion Detection in IoT Networks [1.3097853961043058]
AIベースの侵入検知システム(IDS)を分散IoTシステムに実装する一般的なアプローチは、中央集権的な方法である。
このアプローチはデータのプライバシを侵害し、IDSのスケーラビリティを禁止します。
我々は、実世界の実験代表を設計し、FLベースのIDSの性能を評価する。
論文 参考訳(メタデータ) (2023-06-05T09:08:24Z) - An Interpretable Federated Learning-based Network Intrusion Detection
Framework [9.896258523574424]
FEDFORESTは、解釈可能なグラディエントブースティング決定木(GBDT)とフェデレートラーニング(FL)フレームワークを組み合わせた、新しい学習ベースのNIDSである。
FEDFORESTは複数のクライアントで構成されており、サーバがモデルをトレーニングし、侵入を検出するために、ローカルなサイバー攻撃データ特徴を抽出する。
4つのサイバーアタックデータセットの実験は、FEDFORESTが効率的、効率的、解釈可能、拡張可能であることを示した。
論文 参考訳(メタデータ) (2022-01-10T02:12:32Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
次世代のワイヤレスネットワークは、エッジデバイスが収集するさまざまな種類のデータを分析する多くの機械学習ツールやアプリケーションを可能にする。
エッジデバイスが生データ交換なしでMLモデルを協調的にトレーニングできるようにする手段として,分散学習と推論技術が提案されている。
本稿では,ワイヤレスエッジネットワーク上で分散学習を効率的に効果的に展開する方法を包括的に研究する。
論文 参考訳(メタデータ) (2021-04-05T20:57:56Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
フェデレーション学習は、これらのクライアントのローカルデータを中央サーバに転送することなく、クライアント間での学習を促進する。
圧縮勾配降下のための非線形量子化を提案し、フェデレーションラーニングで容易に利用することができる。
本システムは,訓練過程の収束と精度を維持しつつ,通信コストを最大3桁まで削減する。
論文 参考訳(メタデータ) (2020-12-15T12:20:28Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
超信頼性・低レイテンシ通信(URLLC)は、様々な新しいミッションクリティカルなアプリケーションの開発の中心となる。
ディープラーニングアルゴリズムは、将来の6GネットワークでURLLCを実現する技術を開発するための有望な方法と考えられている。
このチュートリアルでは、URLLCのさまざまなディープラーニングアルゴリズムにドメイン知識を組み込む方法について説明する。
論文 参考訳(メタデータ) (2020-09-13T14:53:01Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。