論文の概要: Deep Learning Approaches for Network Traffic Classification in the
Internet of Things (IoT): A Survey
- arxiv url: http://arxiv.org/abs/2402.00920v1
- Date: Thu, 1 Feb 2024 14:33:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 18:18:37.375536
- Title: Deep Learning Approaches for Network Traffic Classification in the
Internet of Things (IoT): A Survey
- Title(参考訳): IoT(Internet of Things)におけるネットワークトラフィック分類のためのディープラーニングアプローチ
- Authors: Jawad Hussain Kalwar, Sania Bhatti
- Abstract要約: IoT(Internet of Things)は前例のない成長を遂げ、相互接続されたデバイスからの多様なネットワークトラフィックが大量に流入している。
このネットワークトラフィックを効果的に分類することは、リソース割り当ての最適化、セキュリティ対策の強化、IoTシステムにおける効率的なネットワーク管理の確保に不可欠である。
ディープラーニングは、生データから複雑なパターンや表現を自動的に学習する能力のために、ネットワークトラフィック分類の強力なテクニックとして登場した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Internet of Things (IoT) has witnessed unprecedented growth, resulting in
a massive influx of diverse network traffic from interconnected devices.
Effectively classifying this network traffic is crucial for optimizing resource
allocation, enhancing security measures, and ensuring efficient network
management in IoT systems. Deep learning has emerged as a powerful technique
for network traffic classification due to its ability to automatically learn
complex patterns and representations from raw data. This survey paper aims to
provide a comprehensive overview of the existing deep learning approaches
employed in network traffic classification specifically tailored for IoT
environments. By systematically analyzing and categorizing the latest research
contributions in this domain, we explore the strengths and limitations of
various deep learning models in handling the unique challenges posed by IoT
network traffic. Through this survey, we aim to offer researchers and
practitioners valuable insights, identify research gaps, and provide directions
for future research to further enhance the effectiveness and efficiency of deep
learning-based network traffic classification in IoT.
- Abstract(参考訳): IoT(Internet of Things)は前例のない成長を遂げ、相互接続デバイスからの多様なネットワークトラフィックが大量に流入している。
このネットワークトラフィックを効果的に分類することは、リソース割り当ての最適化、セキュリティ対策の強化、IoTシステムにおける効率的なネットワーク管理の確保に不可欠である。
ディープラーニングは、生データから複雑なパターンや表現を自動的に学習する能力から、ネットワークトラフィック分類の強力なテクニックとして登場した。
本研究の目的は,IoT環境に適したネットワークトラフィック分類において,既存のディープラーニングアプローチを概観することである。
この領域における最新の研究成果を体系的に分析し、分類することにより、iotネットワークトラフィックによって生じるユニークな課題に対処する上で、さまざまなディープラーニングモデルの強みと限界を探求する。
この調査を通じて、研究者や実践者が貴重な洞察を提供し、研究ギャップを特定し、iotにおけるディープラーニングベースのネットワークトラフィック分類の有効性と効率をさらに高めるための今後の研究の方向性を提供する。
関連論文リスト
- A Cutting-Edge Deep Learning Method For Enhancing IoT Security [0.0]
本稿では,Deep Learning-integrated Convolutional Neural Networks (CNN) とLong Short-Term Memory (LSTM) ネットワークを用いたモノのインターネット(IoT)環境侵入検知システム(IDS)の革新的な設計を提案する。
われわれのモデルはCICIDS 2017データセットに基づいて、ネットワークトラフィックを良性または悪意のいずれかとして分類する精度99.52%を達成した。
論文 参考訳(メタデータ) (2024-06-18T08:42:51Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
本稿では,CNN,Recurrent Neural Networks(RNN),Deep Belief Networks(DBN),Deep Neural Networks(DNN),Long Short-Term Memory(LSTM),Autoencoders(AE),Multi-Layer Perceptrons(MLP),Self-Normalizing Networks(SNN),Hybrid Model(ネットワーク侵入検知システム)など,近年のディープラーニング技術の進歩について述べる。
論文 参考訳(メタデータ) (2024-02-26T20:57:35Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Towards Intelligent Network Management: Leveraging AI for Network
Service Detection [0.0]
本研究では,高度なネットワークトラフィック分類システムを構築するために機械学習手法を活用することに焦点を当てた。
我々は,様々なネットワークサービスタイプをリアルタイムに識別する,新しいデータ駆動型アプローチを提案する。
本システムは,ネットワークサービスを識別する際,顕著な精度を示す。
論文 参考訳(メタデータ) (2023-10-14T16:06:11Z) - Effective Intrusion Detection in Highly Imbalanced IoT Networks with
Lightweight S2CGAN-IDS [48.353590166168686]
モノのインターネット(IoT)ネットワークは、異常なトラフィックよりも遥かに良質なトラフィックを含んでいる。
既存研究の多くは、少数民族の検出率を向上させるために、多数民族の検出率を犠牲にすることに焦点を当てている。
我々はS2CGAN-IDSという軽量なフレームワークを提案し、データ空間と特徴空間の両方においてマイノリティなカテゴリの数を拡大する。
論文 参考訳(メタデータ) (2023-06-06T14:19:23Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
我々は、エネルギー効率と高速モデルトレーニングのための交通信号認識に強力なスパイクニューラルネットワーク(SNN)を導入している。
数値的な結果から,提案するフェデレーションSNNは,従来のフェデレーション畳み込みニューラルネットワークよりも精度,ノイズ免疫性,エネルギー効率に優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-05-28T03:11:48Z) - Deep Transfer Learning: A Novel Collaborative Learning Model for
Cyberattack Detection Systems in IoT Networks [17.071452978622123]
フェデレートラーニング(FL)は近年,サイバー攻撃検知システムにおいて有効なアプローチとなっている。
FLは学習効率を改善し、通信オーバーヘッドを減らし、サイバー攻撃検知システムのプライバシーを高める。
このようなシステムにおけるFLの実装上の課題は、ラベル付きデータの可用性の欠如と、異なるIoTネットワークにおけるデータ機能の相違である。
論文 参考訳(メタデータ) (2021-12-02T05:26:29Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
コミュニティは、ネットワーク内の他のコミュニティと異なるメンバーの特徴と接続を明らかにする。
この調査は、最先端の手法の様々なカテゴリをカバーする新しい分類法を考案し、提案する。
ディープニューラルネットワーク(Deep Neural Network)は、畳み込みネットワーク(convolutional network)、グラフアテンションネットワーク( graph attention network)、生成的敵ネットワーク(generative adversarial network)、オートエンコーダ(autoencoder)に分けられる。
論文 参考訳(メタデータ) (2021-05-26T14:37:07Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Dynamic Graph Neural Network for Traffic Forecasting in Wide Area
Networks [1.0934800950965335]
我々は,マルチステップネットワークトラフィック予測のための非自動グラフベースニューラルネットワークを開発した。
我々は,米国エネルギー省の専用科学ネットワークESnetの実際のトラフィックに対するアプローチの有効性を評価する。
論文 参考訳(メタデータ) (2020-08-28T17:47:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。