論文の概要: N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event
Cameras
- arxiv url: http://arxiv.org/abs/2112.01041v1
- Date: Thu, 2 Dec 2021 08:08:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-04 02:58:40.697971
- Title: N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event
Cameras
- Title(参考訳): n-imagenet:イベントカメラによるロバストできめ細かい物体認識に向けて
- Authors: Junho Kim, Jaehyeok Bae, Gangin Park, and Young Min Kim
- Abstract要約: 我々は,イベントカメラを用いた堅牢できめ細かい物体認識を目的とした大規模データセットであるN-ImageNetを紹介する。
N-ImageNetは、多数のクラスとサンプルのために、イベントベースのオブジェクト認識の難しいベンチマークとして機能する。
- 参考スコア(独自算出の注目度): 5.726662931271546
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We introduce N-ImageNet, a large-scale dataset targeted for robust,
fine-grained object recognition with event cameras. The dataset is collected
using programmable hardware in which an event camera consistently moves around
a monitor displaying images from ImageNet. N-ImageNet serves as a challenging
benchmark for event-based object recognition, due to its large number of
classes and samples. We empirically show that pretraining on N-ImageNet
improves the performance of event-based classifiers and helps them learn with
few labeled data. In addition, we present several variants of N-ImageNet to
test the robustness of event-based classifiers under diverse camera
trajectories and severe lighting conditions, and propose a novel event
representation to alleviate the performance degradation. To the best of our
knowledge, we are the first to quantitatively investigate the consequences
caused by various environmental conditions on event-based object recognition
algorithms. N-ImageNet and its variants are expected to guide practical
implementations for deploying event-based object recognition algorithms in the
real world.
- Abstract(参考訳): 我々は,イベントカメラを用いた堅牢できめ細かい物体認識を目的とした大規模データセットであるN-ImageNetを紹介する。
データセットは、イベントカメラがimagenetから画像を表示するモニタの周りを一貫して動き回るプログラマブルなハードウェアを用いて収集される。
N-ImageNetは、多数のクラスとサンプルのために、イベントベースのオブジェクト認識の難しいベンチマークとして機能する。
我々は,N-ImageNetの事前学習がイベントベース分類器の性能を改善し,ラベル付きデータの少ない学習を支援することを実証的に示す。
さらに,様々なカメラトラジェクトリと厳しい照明条件下でのイベントベース分類器の堅牢性をテストするために,N-ImageNetのいくつかのバリエーションを提案し,性能劣化を軽減するための新しいイベント表現を提案する。
我々の知る限りでは、イベントベース物体認識アルゴリズムにおいて、様々な環境条件による影響を定量的に研究するのは初めてである。
N-ImageNetとその変種は、実世界でイベントベースのオブジェクト認識アルゴリズムをデプロイするための実践的な実装を導くことが期待されている。
関連論文リスト
- Evaluating Image-Based Face and Eye Tracking with Event Cameras [9.677797822200965]
イベントカメラはニューロモルフィックセンサーとしても知られており、ピクセルレベルの局所光強度の変化を捉え、非同期に生成されたイベントと呼ばれるデータを生成する。
このデータフォーマットは、高速で動く物体を撮影する際のアンダーサンプリングのような、従来のカメラで観察される一般的な問題を緩和する。
我々は、従来のアルゴリズムとイベントベースのデータを統合することにより、フレーム形式に変換される可能性を評価する。
論文 参考訳(メタデータ) (2024-08-19T20:27:08Z) - Visual Context-Aware Person Fall Detection [52.49277799455569]
画像中の個人とオブジェクトを半自動分離するセグメンテーションパイプラインを提案する。
ベッド、椅子、車椅子などの背景オブジェクトは、転倒検知システムに挑戦し、誤ったポジティブアラームを引き起こす。
トレーニング中のオブジェクト固有のコンテキスト変換が、この課題を効果的に軽減することを示す。
論文 参考訳(メタデータ) (2024-04-11T19:06:36Z) - Event-to-Video Conversion for Overhead Object Detection [7.744259147081667]
イベントカメラは、特にオブジェクト検出などの複雑なタスクにおいて、下流の画像処理を複雑にする。
本稿では,高密度イベント表現とそれに対応するRGBフレームの間には,大きな差があることを述べる。
このギャップを埋めるために、イベントストリームをグレースケールのビデオに変換するイベント間変換モデルを適用する。
論文 参考訳(メタデータ) (2024-02-09T22:07:39Z) - EventTransAct: A video transformer-based framework for Event-camera
based action recognition [52.537021302246664]
イベントカメラは、RGBビデオの標準アクション認識と比較して、新しい機会を提供する。
本研究では,最初にイベントフレーム当たりの空間埋め込みを取得するビデオトランスフォーマーネットワーク(VTN)という,計算効率のよいモデルを用いる。
イベントデータのスパースできめ細かい性質にVTNをよりよく採用するために、イベントコントラストロス(mathcalL_EC$)とイベント固有の拡張を設計する。
論文 参考訳(メタデータ) (2023-08-25T23:51:07Z) - Cross-modal Place Recognition in Image Databases using Event-based
Sensors [28.124708490967713]
イベントクエリが与えられたデータベースから正規画像を取得することができる,最初のクロスプラットフォームな視覚的位置認識フレームワークを提案する。
本手法は,ブリスベン-イベント-VPRデータセット上での最先端のフレームベースおよびイベントベース手法に関する有望な結果を示す。
論文 参考訳(メタデータ) (2023-07-03T14:24:04Z) - EventCLIP: Adapting CLIP for Event-based Object Recognition [26.35633454924899]
EventCLIPは、ゼロショットと少数ショットのイベントベースのオブジェクト認識にCLIPを使用する新しいアプローチである。
まず、生イベントを2次元グリッドベース表現に変換することで、CLIPのイメージエンコーダをイベントデータに一般化する。
N-Caltech、N-Cars、N-ImageNetのデータセット上でEventCLIPを評価し、最先端のショットパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-06-10T06:05:35Z) - Object Detection in Aerial Images with Uncertainty-Aware Graph Network [61.02591506040606]
本稿では,ノードとエッジがオブジェクトによって表現される構造化グラフを用いた,新しい不確実性を考慮したオブジェクト検出フレームワークを提案する。
我々は我々のモデルをオブジェクトDETection(UAGDet)のための不確実性対応グラフネットワークと呼ぶ。
論文 参考訳(メタデータ) (2022-08-23T07:29:03Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
イベントカメラは、強度フレームではなく、非同期イベントのストリームの形式で輝度を変化させる。
最近の学習に基づくアプローチは、単眼深度予測のようなイベントベースのデータに適用されている。
本稿では,この課題を解決するための繰り返しアーキテクチャを提案し,標準フィードフォワード法よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-16T12:36:23Z) - Learning to Detect Objects with a 1 Megapixel Event Camera [14.949946376335305]
イベントカメラは、高時間精度、低データレート、高ダイナミックレンジで視覚情報を符号化する。
フィールドの新規性のため、多くのビジョンタスクにおけるイベントベースのシステムの性能は、従来のフレームベースのソリューションに比べて依然として低い。
論文 参考訳(メタデータ) (2020-09-28T16:03:59Z) - Asynchronous Tracking-by-Detection on Adaptive Time Surfaces for
Event-based Object Tracking [87.0297771292994]
本稿では,イベントベースのトラッキング・バイ・ディテクト(ETD)手法を提案する。
この目的を達成するために,線形時間決定(ATSLTD)イベント・ツー・フレーム変換アルゴリズムを用いた適応時間曲面を提案する。
提案手法と,従来のカメラやイベントカメラをベースとした7種類のオブジェクト追跡手法と,ETDの2種類のバリエーションを比較した。
論文 参考訳(メタデータ) (2020-02-13T15:58:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。