論文の概要: Cross-modal Place Recognition in Image Databases using Event-based
Sensors
- arxiv url: http://arxiv.org/abs/2307.01047v1
- Date: Mon, 3 Jul 2023 14:24:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-05 12:49:41.877879
- Title: Cross-modal Place Recognition in Image Databases using Event-based
Sensors
- Title(参考訳): イベントベースセンサを用いた画像データベースにおけるクロスモーダル位置認識
- Authors: Xiang Ji, Jiaxin Wei, Yifu Wang, Huiliang Shang and Laurent Kneip
- Abstract要約: イベントクエリが与えられたデータベースから正規画像を取得することができる,最初のクロスプラットフォームな視覚的位置認識フレームワークを提案する。
本手法は,ブリスベン-イベント-VPRデータセット上での最先端のフレームベースおよびイベントベース手法に関する有望な結果を示す。
- 参考スコア(独自算出の注目度): 28.124708490967713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual place recognition is an important problem towards global localization
in many robotics tasks. One of the biggest challenges is that it may suffer
from illumination or appearance changes in surrounding environments. Event
cameras are interesting alternatives to frame-based sensors as their high
dynamic range enables robust perception in difficult illumination conditions.
However, current event-based place recognition methods only rely on event
information, which restricts downstream applications of VPR. In this paper, we
present the first cross-modal visual place recognition framework that is
capable of retrieving regular images from a database given an event query. Our
method demonstrates promising results with respect to the state-of-the-art
frame-based and event-based methods on the Brisbane-Event-VPR dataset under
different scenarios. We also verify the effectiveness of the combination of
retrieval and classification, which can boost performance by a large margin.
- Abstract(参考訳): 視覚位置認識は多くのロボットタスクにおけるグローバルローカライズへの重要な課題である。
最大の課題の1つは、周囲の環境の照明や外観の変化に苦しむ可能性があることである。
イベントカメラは、高いダイナミックレンジが困難な照明条件で堅牢な認識を可能にするため、フレームベースのセンサーに代わる興味深い代替手段である。
しかし、現在のイベントベースの場所認識手法は、VPRの下流アプリケーションを制限するイベント情報のみに依存している。
本稿では,イベントクエリを与えられたデータベースから正規画像を取得することのできる,最初のクロスモーダル視覚位置認識フレームワークを提案する。
本手法は,Brisbane-Event-VPRデータセット上での最先端のフレームベースおよびイベントベース手法に関する有望な結果を示す。
また,検索と分類の組み合わせの有効性を検証し,高いマージンで性能を向上できることを確認した。
関連論文リスト
- CEIA: CLIP-Based Event-Image Alignment for Open-World Event-Based Understanding [52.67839570524888]
オープンワールドイベントベースの理解のための効果的なフレームワークであるCEIAを提示する。
リッチなイベントイメージデータセットを活用して、CLIPの画像空間と整合したイベント埋め込みスペースを学習します。
CEIAには2つの異なる利点がある。第一に、大規模なイベントテキストデータセットの不足を補うために、既存のイベントイメージデータセットを最大限に活用することができる。
論文 参考訳(メタデータ) (2024-07-09T07:26:15Z) - Research, Applications and Prospects of Event-Based Pedestrian Detection: A Survey [10.494414329120909]
生物学的網膜にインスパイアされたイベントベースのカメラは、最小限の電力要求、無視できるレイテンシ、時間分解能、拡張可能なダイナミックレンジによって区別される最先端のセンサーへと進化してきた。
イベントベースのカメラは、高速撮像のシナリオにおいて、外部データ伝送を誘発し、動きのぼやけをなくすことによって制限に対処する。
本稿では,特に自律運転における研究と応用について概観する。
論文 参考訳(メタデータ) (2024-07-05T06:17:00Z) - Relating Events and Frames Based on Self-Supervised Learning and
Uncorrelated Conditioning for Unsupervised Domain Adaptation [23.871860648919593]
イベントベースのカメラは、コンピュータビジョンタスクを実行するための正確かつ高時間分解能の測定を提供する。
それらの利点にもかかわらず、イベントベースのビジョンにディープラーニングを活用することは、注釈付きデータの不足のために大きな障害に直面する。
本稿では、イベントベースの未注釈データに基づいて、注釈付きフレームベースのデータに基づいてトレーニングされたディープニューラルネットワークを適用するための新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-02T05:10:08Z) - EventTransAct: A video transformer-based framework for Event-camera
based action recognition [52.537021302246664]
イベントカメラは、RGBビデオの標準アクション認識と比較して、新しい機会を提供する。
本研究では,最初にイベントフレーム当たりの空間埋め込みを取得するビデオトランスフォーマーネットワーク(VTN)という,計算効率のよいモデルを用いる。
イベントデータのスパースできめ細かい性質にVTNをよりよく採用するために、イベントコントラストロス(mathcalL_EC$)とイベント固有の拡張を設計する。
論文 参考訳(メタデータ) (2023-08-25T23:51:07Z) - Event-based Simultaneous Localization and Mapping: A Comprehensive Survey [52.73728442921428]
ローカライゼーションとマッピングタスクのための非同期および不規則なイベントストリームの利点を利用する、イベントベースのvSLAMアルゴリズムのレビュー。
Paperは、イベントベースのvSLAMメソッドを、特徴ベース、ダイレクト、モーション補償、ディープラーニングの4つのカテゴリに分類する。
論文 参考訳(メタデータ) (2023-04-19T16:21:14Z) - Deep Learning for Event-based Vision: A Comprehensive Survey and Benchmarks [55.81577205593956]
イベントカメラはバイオインスパイアされたセンサーで、ピクセルごとの強度の変化を非同期に捉える。
深層学習(DL)はこの新興分野に導入され、その可能性のマイニングに活発な研究努力にインスピレーションを与えている。
論文 参考訳(メタデータ) (2023-02-17T14:19:28Z) - How Many Events do You Need? Event-based Visual Place Recognition Using
Sparse But Varying Pixels [29.6328152991222]
イベントカメラ研究の潜在的な応用の1つは、ロボットのローカライゼーションのための視覚的位置認識である。
事象フレームに蓄積した画素位置における事象数に絶対的な差があることが、位置認識タスクに十分であることを示す。
我々は,Brisbane-Event-VPRデータセットに対する提案手法を,新たに提案した屋内QCR-Event-VPRデータセットとともに屋外運転シナリオで評価した。
論文 参考訳(メタデータ) (2022-06-28T00:24:12Z) - Bridging the Gap between Events and Frames through Unsupervised Domain
Adaptation [57.22705137545853]
本稿では,ラベル付き画像とラベル付きイベントデータを用いてモデルを直接訓練するタスク転送手法を提案する。
生成イベントモデルを利用して、イベント機能をコンテンツとモーションに分割します。
われわれのアプローチは、イベントベースのニューラルネットワークのトレーニングのために、膨大な量の既存の画像データセットをアンロックする。
論文 参考訳(メタデータ) (2021-09-06T17:31:37Z) - Learning to Detect Objects with a 1 Megapixel Event Camera [14.949946376335305]
イベントカメラは、高時間精度、低データレート、高ダイナミックレンジで視覚情報を符号化する。
フィールドの新規性のため、多くのビジョンタスクにおけるイベントベースのシステムの性能は、従来のフレームベースのソリューションに比べて依然として低い。
論文 参考訳(メタデータ) (2020-09-28T16:03:59Z) - Unsupervised Feature Learning for Event Data: Direct vs Inverse Problem
Formulation [53.850686395708905]
イベントベースのカメラは、ピクセルごとの明るさ変化の非同期ストリームを記録する。
本稿では,イベントデータからの表現学習のための単一層アーキテクチャに焦点を当てる。
我々は,最先端手法と比較して,認識精度が最大9%向上したことを示す。
論文 参考訳(メタデータ) (2020-09-23T10:40:03Z) - City-Scale Visual Place Recognition with Deep Local Features Based on
Multi-Scale Ordered VLAD Pooling [5.274399407597545]
本稿では,コンテンツに基づく画像検索に基づいて,都市規模で位置認識を行うシステムを提案する。
まず,視覚的位置認識の包括的分析を行い,その課題を概観する。
次に,画像表現ベクトルに空間情報を埋め込むために,畳み込み型ニューラルネットワークアクティベーションを用いた単純なプーリング手法を提案する。
論文 参考訳(メタデータ) (2020-09-19T15:21:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。