論文の概要: FNR: A Similarity and Transformer-Based Approachto Detect Multi-Modal
FakeNews in Social Media
- arxiv url: http://arxiv.org/abs/2112.01131v1
- Date: Thu, 2 Dec 2021 11:12:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-03 17:31:07.971941
- Title: FNR: A Similarity and Transformer-Based Approachto Detect Multi-Modal
FakeNews in Social Media
- Title(参考訳): FNR:ソーシャルメディアにおけるマルチモーダルフェイクニュースの類似性とトランスフォーマーに基づく検出手法
- Authors: Faeze Ghorbanpour, Maryam Ramezani, Mohammad A. Fazli and Hamid R.
Rabiee
- Abstract要約: 本研究の目的は、ソーシャルメディアのテキストや画像から複数モーダルな特徴を分析し、偽ニュースを検出することである。
本稿では、変換学習を利用して文脈的・意味的な特徴を抽出するFake News Revealer(FNR)手法を提案する。
提案手法は,従来の研究に比べて偽ニュースの検出精度が高いことを示す。
- 参考スコア(独自算出の注目度): 4.607964446694258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The availability and interactive nature of social media have made them the
primary source of news around the globe. The popularity of social media tempts
criminals to pursue their immoral intentions by producing and disseminating
fake news using seductive text and misleading images. Therefore, verifying
social media news and spotting fakes is crucial. This work aims to analyze
multi-modal features from texts and images in social media for detecting fake
news. We propose a Fake News Revealer (FNR) method that utilizes transform
learning to extract contextual and semantic features and contrastive loss to
determine the similarity between image and text. We applied FNR on two real
social media datasets. The results show the proposed method achieves higher
accuracies in detecting fake news compared to the previous works.
- Abstract(参考訳): ソーシャルメディアの可用性とインタラクティブ性は、世界中のニュースの主要な情報源となっている。
ソーシャルメディアの人気は、誘惑的なテキストと誤解を招く画像を使って偽ニュースを制作し、広めることによって、犯罪者が不道徳な意図を追求することを誘惑する。
したがって、ソーシャルメディアのニュースの検証や偽物の発見が不可欠である。
本研究の目的は、ソーシャルメディアのテキストや画像から複数モーダルな特徴を分析し、偽ニュースを検出することである。
本稿では,画像とテキストの類似性を決定するために,文脈的特徴と意味的特徴の抽出に変換学習を利用する偽ニュース露見器(fnr)手法を提案する。
2つの実ソーシャルメディアデータセットにFNRを適用した。
その結果,提案手法は先行手法に比べて偽ニュースの検出精度が高いことがわかった。
関連論文リスト
- Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - TieFake: Title-Text Similarity and Emotion-Aware Fake News Detection [15.386007761649251]
本稿では,マルチモーダルな文脈情報と著者の感情を共同でモデル化し,テキストの類似性と感情認識型フェイクニュース検出(TieFake)手法を提案する。
具体的には、BERT と ResNeSt を用いて、テキストや画像の表現を学習し、出版者感情抽出器を用いて、ニュースコンテンツにおける著者の主観的感情をキャプチャする。
論文 参考訳(メタデータ) (2023-04-19T04:47:36Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
本稿では,ニュース間のグループ間相互作用を表現するためにハイパーグラフを活用することを提案する。
提案手法は,ラベル付きニュースデータの小さなサブセットであっても,優れた性能を示し,高い性能を維持する。
論文 参考訳(メタデータ) (2022-12-24T00:19:32Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - Modelling Social Context for Fake News Detection: A Graph Neural Network
Based Approach [0.39146761527401425]
フェイクニュースの検出は、情報の信頼性を確保し、ニュースエコシステムの信頼性を維持するために不可欠である。
本稿では,ハイブリッドグラフニューラルネットワークによる偽ニュース検出の社会的文脈を解析した。
論文 参考訳(メタデータ) (2022-07-27T12:58:33Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - Multimodal Fake News Detection [1.929039244357139]
単調な手法とマルチモーダル手法の両方を用いて、ファケディットデータセット上のフェイクニュースのきめ細かい分類を行う。
操作されたコンテンツ、Satire、False接続などの偽ニュースカテゴリは、画像の使用の恩恵を強く受けている。
画像を使用することで、他のカテゴリの結果も改善されるが、影響は少ない。
論文 参考訳(メタデータ) (2021-12-09T10:57:18Z) - Stance Detection with BERT Embeddings for Credibility Analysis of
Information on Social Media [1.7616042687330642]
本稿では,記事の内容とともに,その特徴の1つとして姿勢を用いた偽ニュースを検出するモデルを提案する。
本研究は,自動的特徴抽出とテキストの関連性でコンテンツを解釈する。
実世界のデータセットで行った実験は、我々のモデルが以前の研究より優れており、95.32%の精度で偽ニュースの検出を可能にすることを示している。
論文 参考訳(メタデータ) (2021-05-21T10:46:43Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z) - Multimodal Fusion with BERT and Attention Mechanism for Fake News
Detection [0.0]
テキストと視覚データから派生したマルチモーダル特徴を融合させて偽ニュースを検出する新しい手法を提案する。
実験の結果,公開twitterデータセットにおける現在の最先端手法よりも3.1%の精度で性能が向上した。
論文 参考訳(メタデータ) (2021-04-23T08:47:54Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
我々は、ユーザーがフェイクニュースを共有するのに、ユーザー属性が何をもたらすかを理解することが重要だと論じている。
偽ニュース拡散において、共同創設者は、本質的にユーザー属性やオンライン活動に関連する偽ニュース共有行動によって特徴づけられる。
本稿では,偽ニュース拡散における選択バイアスを軽減するための原則的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-20T19:37:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。