論文の概要: Multimodal Fusion with BERT and Attention Mechanism for Fake News
Detection
- arxiv url: http://arxiv.org/abs/2104.11476v2
- Date: Tue, 27 Apr 2021 05:16:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-29 07:03:36.311681
- Title: Multimodal Fusion with BERT and Attention Mechanism for Fake News
Detection
- Title(参考訳): BERTによるマルチモーダル核融合とフェイクニュース検出の注意機構
- Authors: Nguyen Manh Duc Tuan, Pham Quang Nhat Minh
- Abstract要約: テキストと視覚データから派生したマルチモーダル特徴を融合させて偽ニュースを検出する新しい手法を提案する。
実験の結果,公開twitterデータセットにおける現在の最先端手法よりも3.1%の精度で性能が向上した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fake news detection is an important task for increasing the credibility of
information on the media since fake news is constantly spreading on social
media every day and it is a very serious concern in our society. Fake news is
usually created by manipulating images, texts, and videos. In this paper, we
present a novel method for detecting fake news by fusing multimodal features
derived from textual and visual data. Specifically, we used a pre-trained BERT
model to learn text features and a VGG-19 model pre-trained on the ImageNet
dataset to extract image features. We proposed a scale-dot product attention
mechanism to capture the relationship between text features and visual
features. Experimental results showed that our approach performs better than
the current state-of-the-art method on a public Twitter dataset by 3.1%
accuracy.
- Abstract(参考訳): フェイクニュースの検出は、偽ニュースが毎日ソーシャルメディアに拡散しているため、メディア上の情報の信頼性を高める上で重要な課題であり、我々の社会にとって非常に深刻な関心事である。
偽ニュースは通常、画像、テキスト、ビデオを操作することで生成される。
本稿では,テキストと視覚データから派生したマルチモーダル特徴を融合させて偽ニュースを検出する手法を提案する。
具体的には、事前学習したBERTモデルを用いてテキストの特徴を学習し、ImageNetデータセットで事前学習したVGG-19モデルを用いて画像の特徴を抽出した。
テキストの特徴と視覚的特徴の関係を捉えるためのスケールドット製品アテンション機構を提案した。
実験の結果,公開twitterデータセットにおける現在の最先端手法よりも3.1%の精度で性能が向上した。
関連論文リスト
- Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - fakenewsbr: A Fake News Detection Platform for Brazilian Portuguese [0.6775616141339018]
本稿ではブラジルポルトガル語における偽ニュースの検出に関する総合的研究について述べる。
本稿では、TF-IDFやWord2Vecといった自然言語処理技術を活用する機械学習ベースのアプローチを提案する。
ユーザフレンドリーなWebプラットフォームである fakenewsbr.com を開発し,ニュース記事の妥当性の検証を容易にする。
論文 参考訳(メタデータ) (2023-09-20T04:10:03Z) - TieFake: Title-Text Similarity and Emotion-Aware Fake News Detection [15.386007761649251]
本稿では,マルチモーダルな文脈情報と著者の感情を共同でモデル化し,テキストの類似性と感情認識型フェイクニュース検出(TieFake)手法を提案する。
具体的には、BERT と ResNeSt を用いて、テキストや画像の表現を学習し、出版者感情抽出器を用いて、ニュースコンテンツにおける著者の主観的感情をキャプチャする。
論文 参考訳(メタデータ) (2023-04-19T04:47:36Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - Modelling Social Context for Fake News Detection: A Graph Neural Network
Based Approach [0.39146761527401425]
フェイクニュースの検出は、情報の信頼性を確保し、ニュースエコシステムの信頼性を維持するために不可欠である。
本稿では,ハイブリッドグラフニューラルネットワークによる偽ニュース検出の社会的文脈を解析した。
論文 参考訳(メタデータ) (2022-07-27T12:58:33Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - Multimodal Fake News Detection [1.929039244357139]
単調な手法とマルチモーダル手法の両方を用いて、ファケディットデータセット上のフェイクニュースのきめ細かい分類を行う。
操作されたコンテンツ、Satire、False接続などの偽ニュースカテゴリは、画像の使用の恩恵を強く受けている。
画像を使用することで、他のカテゴリの結果も改善されるが、影響は少ない。
論文 参考訳(メタデータ) (2021-12-09T10:57:18Z) - FNR: A Similarity and Transformer-Based Approachto Detect Multi-Modal
FakeNews in Social Media [4.607964446694258]
本研究の目的は、ソーシャルメディアのテキストや画像から複数モーダルな特徴を分析し、偽ニュースを検出することである。
本稿では、変換学習を利用して文脈的・意味的な特徴を抽出するFake News Revealer(FNR)手法を提案する。
提案手法は,従来の研究に比べて偽ニュースの検出精度が高いことを示す。
論文 参考訳(メタデータ) (2021-12-02T11:12:09Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。