論文の概要: Risk-Aware Algorithms for Combinatorial Semi-Bandits
- arxiv url: http://arxiv.org/abs/2112.01141v1
- Date: Thu, 2 Dec 2021 11:29:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-03 14:36:23.382167
- Title: Risk-Aware Algorithms for Combinatorial Semi-Bandits
- Title(参考訳): コンビニアルセミバンドのリスク認識アルゴリズム
- Authors: Shaarad Ayyagari, Ambedkar Dukkipati
- Abstract要約: 半帯域フィードバック下でのマルチアームバンディット問題について検討する。
本稿では,最悪の場合の報酬のみを考慮したリスク尺度であるCVaR(Conditional Value-at-Risk)の最大化の問題を検討する。
本稿では,バンディットのスーパーアームから得られる報酬のCVaRを最大化するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 7.716156977428555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study the stochastic combinatorial multi-armed bandit
problem under semi-bandit feedback. While much work has been done on algorithms
that optimize the expected reward for linear as well as some general reward
functions, we study a variant of the problem, where the objective is to be
risk-aware. More specifically, we consider the problem of maximizing the
Conditional Value-at-Risk (CVaR), a risk measure that takes into account only
the worst-case rewards. We propose new algorithms that maximize the CVaR of the
rewards obtained from the super arms of the combinatorial bandit for the two
cases of Gaussian and bounded arm rewards. We further analyze these algorithms
and provide regret bounds. We believe that our results provide the first
theoretical insights into combinatorial semi-bandit problems in the risk-aware
case.
- Abstract(参考訳): 本稿では,半帯域フィードバック下での確率的組合せ多重武装バンディット問題について検討する。
線形および一般報酬関数に対する期待報酬を最適化するアルゴリズムについて多くの研究がなされているが、我々はリスクを意識することを目的とした問題の変種を研究している。
より具体的には、最悪の報酬のみを考慮したリスク尺度である条件付きバリュー・アット・リスク(CVaR)の最大化の問題を検討する。
本稿では,ガウスと有界の2つの腕報酬に対して,組合せバンディットのスーパーアームから得られる報酬のCVaRを最大化するアルゴリズムを提案する。
さらに,これらのアルゴリズムを解析し,後悔の限界を与える。
本研究は,リスク対応事例における組合せ半帯域問題に関する最初の理論的知見を提供するものであると考えている。
関連論文リスト
- Replicability is Asymptotically Free in Multi-armed Bandits [45.729105054410745]
この仕事の動機は、再現可能な機械学習の需要の増加にある。
特に、高い確率で、アルゴリズムのアクション列がデータセットに固有のランダム性の影響を受けないように、複製可能なアルゴリズムを考える。
論文 参考訳(メタデータ) (2024-02-12T03:31:34Z) - Fixed-Budget Real-Valued Combinatorial Pure Exploration of Multi-Armed
Bandit [65.268245109828]
このアルゴリズムは,アクションクラスのサイズが指数関数的に大きい場合でも,最良のアクションを識別できる最初のアルゴリズムである。
CSAアルゴリズムの誤差確率の上限は指数の対数係数までの下界と一致することを示す。
提案手法を従来手法と実験的に比較し,アルゴリズムの性能が向上したことを示す。
論文 参考訳(メタデータ) (2023-10-24T09:47:32Z) - Contextual bandits with concave rewards, and an application to fair
ranking [108.48223948875685]
CBCR (Contextual Bandits with Concave Rewards) に対する反省点のある最初のアルゴリズムを提案する。
我々は,スカラー・リワード問題に対するCBCRの後悔から,新たな縮小を導出した。
推薦の公正さによって動機づけられたCBCRの特別事例として,ランク付けと公正を意識した目的について述べる。
論文 参考訳(メタデータ) (2022-10-18T16:11:55Z) - Versatile Dueling Bandits: Best-of-both-World Analyses for Online
Learning from Preferences [28.79598714109439]
両環境および敵環境における$K$武器のデュエルバンディットの問題について検討する。
まず,マルチアームのバンディットに対して,任意の(一般的な)デュエル・バンドレットから新たなリダクションを提案する。
提案アルゴリズムは,コンドルチェット・ウィンナーベンチマークに対して最適な$O(sum_i = 1K fraclog TDelta_i)$ regret boundを達成した最初のアルゴリズムでもある。
論文 参考訳(メタデータ) (2022-02-14T13:37:23Z) - Efficient Pure Exploration for Combinatorial Bandits with Semi-Bandit
Feedback [51.21673420940346]
コンビナーシャルバンディットはマルチアームバンディットを一般化し、エージェントが腕のセットを選択し、選択したセットに含まれる各腕の騒々しい報酬を観察します。
我々は, 最善の腕を一定の信頼度で識別する純粋爆発問題と, 応答集合の構造が動作集合の1つと異なるような, より一般的な設定に注目する。
有限多面体に対するプロジェクションフリーオンライン学習アルゴリズムに基づいて、凸的に最適であり、競争力のある経験的性能を持つ最初の計算効率の良いアルゴリズムである。
論文 参考訳(メタデータ) (2021-01-21T10:35:09Z) - Upper Confidence Bounds for Combining Stochastic Bandits [52.10197476419621]
バンディットアルゴリズムを結合する簡単な手法を提案する。
私たちのアプローチは、個々のbanditアルゴリズムのそれぞれを、より高いレベルのn$-armed bandit問題のアームとして扱う"meta-ucb"手順に基づいています。
論文 参考訳(メタデータ) (2020-12-24T05:36:29Z) - Adaptive Algorithms for Multi-armed Bandit with Composite and Anonymous
Feedback [32.62857394584907]
複合および匿名フィードバックによるマルチアームバンディット(MAB)問題を研究する。
本稿では,逆の場合と非逆の場合の適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-13T12:25:41Z) - Corralling Stochastic Bandit Algorithms [54.10645564702416]
相関アルゴリズムの後悔は、最も報酬の高い腕を含む最高のアルゴリズムの後悔よりも悪くはないことを示す。
最高報酬と他の報酬の差は、最高報酬と他の報酬の差に依存することを示す。
論文 参考訳(メタデータ) (2020-06-16T15:33:12Z) - Thompson Sampling Algorithms for Mean-Variance Bandits [97.43678751629189]
我々は平均分散MABのためのトンプソンサンプリング型アルゴリズムを開発した。
我々はまた、ガウシアンとベルヌーイの盗賊に対する包括的後悔の分析も提供する。
我々のアルゴリズムは、全てのリスク許容度に対して既存のLCBベースのアルゴリズムを著しく上回っている。
論文 参考訳(メタデータ) (2020-02-01T15:33:50Z) - Bandit algorithms to emulate human decision making using probabilistic
distortions [20.422725678982726]
報奨分布に歪んだ確率を持つ2つの多重武装バンディット問題を定式化する。
以上のような後悔の最小化の問題と、マルチアームバンディットのための最高の腕識別フレームワークについて考察する。
論文 参考訳(メタデータ) (2016-11-30T17:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。