Computation with quantum Reed-Muller codes and their mapping onto 2D atom arrays
- URL: http://arxiv.org/abs/2410.23263v1
- Date: Wed, 30 Oct 2024 17:47:35 GMT
- Title: Computation with quantum Reed-Muller codes and their mapping onto 2D atom arrays
- Authors: Anqi Gong, Joseph M. Renes,
- Abstract summary: We give a fault tolerant construction for error correction and computation using two punctured quantum Reed-Muller codes.
We show that code switching between these codes can be accomplished using Steane error correction.
We map the PQRM codes to a 2D layout suitable for implementation in arrays of trapped atoms.
- Score: 2.3020018305241328
- License:
- Abstract: We give a fault tolerant construction for error correction and computation using two punctured quantum Reed-Muller (PQRM) codes. In particular, we consider the $[[127,1,15]]$ self-dual doubly-even code that has transversal Clifford gates (CNOT, H, S) and the triply-even $[[127,1,7]]$ code that has transversal T and CNOT gates. We show that code switching between these codes can be accomplished using Steane error correction. For fault-tolerant ancilla preparation we utilize the low-depth hypercube encoding circuit along with different code automorphism permutations in different ancilla blocks, while decoding is handled by the high-performance classical successive cancellation list decoder. In this way, every logical operation in this universal gate set is amenable to extended rectangle analysis. The CNOT exRec has a failure rate approaching $10^{-9}$ at $10^{-3}$ circuit-level depolarizing noise. Furthermore, we map the PQRM codes to a 2D layout suitable for implementation in arrays of trapped atoms and try to reduce the circuit depth of parallel atom movements in state preparation. The resulting protocol is strictly fault-tolerant for the $[[127,1,7]]$ code and practically fault-tolerant for the $[[127,1,15]]$ code. Moreover, each patch requires a permutation consisting of $7$ sub-hypercube swaps only. These are swaps of rectangular grids in our 2D hypercube layout and can be naturally created with acousto-optic deflectors (AODs). Lastly, we show for the family of $[[2^{2r},{2r\choose r},2^r]]$ QRM codes that the entire logical Clifford group can be achieved using only permutations, transversal gates, and fold-transversal gates.
Related papers
- Targeted Clifford logical gates for hypergraph product codes [61.269295538188636]
We construct explicit targeted logical gates for hypergraph product codes.
As a concrete example, we give logical circuits for the $[[18,2,3]]$ toric code.
arXiv Detail & Related papers (2024-11-26T02:32:44Z) - Asymptotically Good Quantum Codes with Transversal Non-Clifford Gates [23.22566380210149]
We construct quantum codes that support $CCZ$ gates over qudits of arbitrary prime power dimension $q$.
The only previously known construction with such linear dimension and distance required a growing alphabet size $q$.
arXiv Detail & Related papers (2024-08-17T16:54:51Z) - Code conversion with the quantum Golay code for a universal transversal gate set [0.13597551064547497]
The $[[7,1,3]]$ Steane code and $[[23,1,7]]$ quantum Golay code have been identified as good candidates for fault-tolerant quantum computing via code concatenation.
A crucial ingredient to this procedure is the $[49,1,5]]$ triorthogonal code, which can itself be seen as related to the self-dual $[[17,1,5]]$ 2D color code.
arXiv Detail & Related papers (2023-07-26T18:00:04Z) - A Family of Quantum Codes with Exotic Transversal Gates [0.0]
An algorithm shows the binary icosahedral group $2I$ together with a $T$-like gate forms the most efficient single-qubit gate set.
To carry out the algorithm fault tolerantly requires a code that implements $ico$ly.
We fill this void by constructing a family of distanced = 3$ codes that all implement $2I$ly.
arXiv Detail & Related papers (2023-05-11T17:58:29Z) - Scalable Quantum Error Correction for Surface Codes using FPGA [67.74017895815125]
A fault-tolerant quantum computer must decode and correct errors faster than they appear.
We report a distributed version of the Union-Find decoder that exploits parallel computing resources for further speedup.
The implementation employs a scalable architecture called Helios that organizes parallel computing resources into a hybrid tree-grid structure.
arXiv Detail & Related papers (2023-01-20T04:23:00Z) - Fault-Tolerant Preparation of Quantum Polar Codes Encoding One Logical
Qubit [5.607676459156789]
We consider quantum polar codes of Calderbank-Shor-Steane type, encoding one logical qubit.
We show that a subfamily of $mathcalQ_1$ codes is equivalent to the well-known family of Shor codes.
We use Steane's error correction technique, which incorporates the proposed fault-tolerant code state preparation procedure.
arXiv Detail & Related papers (2022-09-14T14:30:09Z) - Experimental Characterization of Fault-Tolerant Circuits in Small-Scale
Quantum Processors [67.47400131519277]
A code's logical gate set may be deemed fault-tolerant for gate sequences larger than 10 gates.
Some circuits did not satisfy the fault tolerance criterion.
It is most accurate to assess the fault tolerance criterion when the circuits tested are restricted to those that give rise to an output state with a low dimension.
arXiv Detail & Related papers (2021-12-08T01:52:36Z) - Morphing quantum codes [77.34726150561087]
We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
arXiv Detail & Related papers (2021-12-02T17:43:00Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Efficient color code decoders in $d\geq 2$ dimensions from toric code
decoders [77.34726150561087]
We prove that the Restriction Decoder successfully corrects errors in the color code if and only if the corresponding toric code decoding succeeds.
We numerically estimate the Restriction Decoder threshold for the color code in two and three dimensions against the bit-flip and phase-flip noise.
arXiv Detail & Related papers (2019-05-17T17:41:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.