Frustrated Superradiant Phase Transition
- URL: http://arxiv.org/abs/2112.01470v2
- Date: Thu, 30 Jun 2022 08:49:21 GMT
- Title: Frustrated Superradiant Phase Transition
- Authors: Jinchen Zhao, Myung-Joong Hwang
- Abstract summary: Frustration occurs when a system cannot find a lowest-energy configuration due to conflicting constraints.
We show that a frustrated superradiant phase transition occurs when the ground-state superradiance of cavity fields cannot simultaneously minimize the positive photon hopping energies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Frustration occurs when a system cannot find a lowest-energy configuration
due to conflicting constraints. We show that a frustrated superradiant phase
transition occurs when the ground-state superradiance of cavity fields due to
local light-matter interactions cannot simultaneously minimize the positive
photon hopping energies. We solve the Dicke trimer model on a triangle motif
with both negative and positive hopping energies and show that the latter
results in a six-fold degenerate ground-state manifold in which the
translational symmetry is spontaneously broken. In the frustrated superradiant
phase, we find that two sets of diverging time and fluctuation scales coexist,
one governed by the mean-field critical exponent and another by a novel
critical exponent. The latter is associated with the fluctuation in the
difference of local order parameters and gives rise to site-dependent photon
number critical exponents, which may serve as an experimental probe for the
frustrated superradiant phase. We provide a qualitative explanation for the
emergence of unconventional critical scalings and demonstrate that they are
generic properties of the frustrated superradiant phase at the hand of a
one-dimensional Dicke lattice with an odd number of sites. The mechanism for
the frustrated superradiant phase transition discovered here applies to any
lattice geometries where the anti-ferromagnetic ordering of neighboring sites
are incompatible and therefore our work paves the way towards the exploration
of frustrated phases of coupled light and matter.
Related papers
- Geometric Phase of a Transmon in a Dissipative Quantum Circuit [44.99833362998488]
We study the geometric phases acquired by a paradigmatic setup: a transmon coupled to a superconductor resonating cavity.
In the dissipative model, the non-unitary effects arise from dephasing, relaxation, and decay of the transmon coupled to its environment.
Our approach enables a comparison of the geometric phases obtained in these models, leading to a thorough understanding of the corrections introduced by the presence of the environment.
arXiv Detail & Related papers (2024-01-22T16:41:00Z) - Multicritical dissipative phase transitions in the anisotropic open quantum Rabi model [0.7499722271664147]
We investigate the nonequilibrium steady state of the anisotropic open quantum Rabi model.
We find a rich phase diagram resulting from the interplay between the anisotropy and the dissipation.
Our study enlarges the scope of critical phenomena that may occur in finite-component quantum systems.
arXiv Detail & Related papers (2023-11-19T15:13:57Z) - Superfluid phase transition of nanoscale-confined helium-3 [0.0]
We investigate the superfluid phase transition of helium-3 under nanoscale confinement.
The quasi two-dimensional superfluid is described by a reduced 3x2 complex matrix.
We show that mean-field theory predicts precisely two energetically degenerate superfluid orders to emerge at the transition.
arXiv Detail & Related papers (2023-07-17T19:45:54Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - First-order photon condensation in magnetic cavities: A two-leg ladder
model [0.0]
We consider a model of free fermions in a ladder geometry coupled to a nonuniform cavity mode via Peierls substitution.
Since the cavity mode generates a magnetic field, no-go theorems on spontaneous photon condensation do not apply.
We observe a phase transition to a photon condensed phase characterized by finite circulating currents.
arXiv Detail & Related papers (2023-02-20T10:55:14Z) - Anomalous criticality with bounded fluctuations and long-range
frustration induced by broken time-reversal symmetry [0.0]
We consider a one-dimensional Dicke lattice with complex photon hopping amplitudes.
We investigate the influence of time-reversal symmetry breaking due to synthetic magnetic fields.
arXiv Detail & Related papers (2022-08-03T18:00:04Z) - Gain/loss effects on spin-orbit coupled ultracold atoms in
two-dimensional optical lattices [0.5249805590164902]
We investigate the corresponding non-Hermitian tight-binding model and evaluate the gain/loss effects on various properties of the system.
We find that the conventional bulk-boundary correspondence does not break down with only on-site gain/loss due to the lack of non-Hermitian skin effect.
Given the technical accessibility of state-dependent atom loss, this model could be realized in current cold-atom experiments.
arXiv Detail & Related papers (2022-01-04T16:00:30Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Superradiant phase transition in complex networks [62.997667081978825]
We consider a superradiant phase transition problem for the Dicke-Ising model.
We examine regular, random, and scale-free network structures.
arXiv Detail & Related papers (2020-12-05T17:40:53Z) - Collective radiation from distant emitters [63.391402501241195]
We show that the spectrum of the radiated field exhibits non-Markovian features such as linewidth broadening beyond standard superradiance.
We discuss a proof-of-concept implementation of our results in a superconducting circuit platform.
arXiv Detail & Related papers (2020-06-22T19:03:52Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.