Machine Learning-Based Classification Algorithms for the Prediction of
Coronary Heart Diseases
- URL: http://arxiv.org/abs/2112.01503v1
- Date: Thu, 2 Dec 2021 18:52:56 GMT
- Title: Machine Learning-Based Classification Algorithms for the Prediction of
Coronary Heart Diseases
- Authors: Kelvin Kwakye, Emmanuel Dadzie
- Abstract summary: The study created and tested several machine-learning-based classification models.
The results show that logistic regression produced the highest performance score on the original dataset.
In conclusion, this study suggests that LR on a well-processed and standardized dataset can predict coronary heart disease with greater accuracy than the other algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coronary heart disease, which is a form of cardiovascular disease (CVD), is
the leading cause of death worldwide. The odds of survival are good if it is
found or diagnosed early. The current report discusses a comparative approach
to the classification of coronary heart disease datasets using machine learning
(ML) algorithms. The current study created and tested several
machine-learning-based classification models. The dataset was subjected to
Smote to handle unbalanced classes and feature selection technique in order to
assess the impact on two distinct performance metrics. The results show that
logistic regression produced the highest performance score on the original
dataset compared to the other algorithms employed. In conclusion, this study
suggests that LR on a well-processed and standardized dataset can predict
coronary heart disease with greater accuracy than the other algorithms.
Related papers
- The Impact of Ontology on the Prediction of Cardiovascular Disease Compared to Machine Learning Algorithms [0.0]
This paper compares and reviews the most prominent machine learning algorithms, as well as the ontology-based Machine Learning classification.
The findings are assessed using performance measures generated from the confusion matrix, such as F-Measure, Accuracy, Recall, and Precision.
arXiv Detail & Related papers (2024-05-30T18:40:27Z) - Comparison of Machine Learning Classification Algorithms and Application
to the Framingham Heart Study [0.0]
The use of machine learning algorithms in healthcare can amplify social injustices and health inequities.
This research pertains to some generalizability impediments that occur during the development and the post-deployment of machine learning classification algorithms.
arXiv Detail & Related papers (2024-02-22T22:49:35Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Ensemble Framework for Cardiovascular Disease Prediction [0.0]
Heart disease is the major cause of non-communicable and silent death worldwide.
We have proposed a framework with a stacked ensemble using several machine learning algorithms including ExtraTrees, Random Forest, XGBoost, and so on.
Our proposed framework attained an accuracy of 92.34% which is higher than the existing literature.
arXiv Detail & Related papers (2023-06-16T17:37:43Z) - An Improved Heart Disease Prediction Using Stacked Ensemble Method [0.9187159782788579]
We constructed an ML-based diagnostic system for heart illness forecasting, using a heart disorder dataset.
Our method can easily differentiate between people who have cardiac disease and those who are normal.
arXiv Detail & Related papers (2023-04-12T17:53:59Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - RoS-KD: A Robust Stochastic Knowledge Distillation Approach for Noisy
Medical Imaging [67.02500668641831]
Deep learning models trained on noisy datasets are sensitive to the noise type and lead to less generalization on unseen samples.
We propose a Robust Knowledge Distillation (RoS-KD) framework which mimics the notion of learning a topic from multiple sources to ensure deterrence in learning noisy information.
RoS-KD learns a smooth, well-informed, and robust student manifold by distilling knowledge from multiple teachers trained on overlapping subsets of training data.
arXiv Detail & Related papers (2022-10-15T22:32:20Z) - Density-Aware Personalized Training for Risk Prediction in Imbalanced
Medical Data [89.79617468457393]
Training models with imbalance rate (class density discrepancy) may lead to suboptimal prediction.
We propose a framework for training models for this imbalance issue.
We demonstrate our model's improved performance in real-world medical datasets.
arXiv Detail & Related papers (2022-07-23T00:39:53Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Survival Prediction of Heart Failure Patients using Stacked Ensemble
Machine Learning Algorithm [0.0]
Heart failure is one of the major health hazard issues of our time and is a leading cause of death worldwide.
Data mining is the process of converting massive volumes of raw data created by the healthcare institutions into meaningful information.
Our study shows that only certain attributes collected from the patients are imperative to successfully predict the surviving possibility post heart failure.
arXiv Detail & Related papers (2021-08-30T16:42:27Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.