The Impact of Ontology on the Prediction of Cardiovascular Disease Compared to Machine Learning Algorithms
- URL: http://arxiv.org/abs/2405.20414v1
- Date: Thu, 30 May 2024 18:40:27 GMT
- Title: The Impact of Ontology on the Prediction of Cardiovascular Disease Compared to Machine Learning Algorithms
- Authors: Hakim El Massari, Noreddine Gherabi, Sajida Mhammedi, Hamza Ghandi, Mohamed Bahaj, Muhammad Raza Naqvi,
- Abstract summary: This paper compares and reviews the most prominent machine learning algorithms, as well as the ontology-based Machine Learning classification.
The findings are assessed using performance measures generated from the confusion matrix, such as F-Measure, Accuracy, Recall, and Precision.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cardiovascular disease is one of the chronic diseases that is on the rise. The complications occur when cardiovascular disease is not discovered early and correctly diagnosed at the right time. Various machine learning approaches, including ontology-based Machine Learning techniques, have lately played an essential role in medical science by building an automated system that can identify heart illness. This paper compares and reviews the most prominent machine learning algorithms, as well as ontology-based Machine Learning classification. Random Forest, Logistic regression, Decision Tree, Naive Bayes, k-Nearest Neighbours, Artificial Neural Network, and Support Vector Machine were among the classification methods explored. The dataset used consists of 70000 instances and can be downloaded from the Kaggle website. The findings are assessed using performance measures generated from the confusion matrix, such as F-Measure, Accuracy, Recall, and Precision. The results showed that the ontology outperformed all the machine learning algorithms.
Related papers
- Classification and Prediction of Heart Diseases using Machine Learning Algorithms [0.0]
The K-Nearest Neighbor technique was shown to be the most effective machine learning algorithm for determining whether a patient has heart disease.
It will be beneficial to conduct further studies on the application of additional machine learning algorithms for heart disease prediction.
arXiv Detail & Related papers (2024-09-05T16:52:20Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Recent advancement in Disease Diagnostic using machine learning:
Systematic survey of decades, comparisons, and challenges [0.0]
Pattern recognition and machine learning in the biomedical area promise to increase the precision of disease detection and diagnosis.
This review article examines machine-learning algorithms for detecting diseases, including hepatitis, diabetes, liver disease, dengue fever, and heart disease.
arXiv Detail & Related papers (2023-07-31T16:35:35Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - Machine Learning-Based Classification Algorithms for the Prediction of
Coronary Heart Diseases [0.0]
The study created and tested several machine-learning-based classification models.
The results show that logistic regression produced the highest performance score on the original dataset.
In conclusion, this study suggests that LR on a well-processed and standardized dataset can predict coronary heart disease with greater accuracy than the other algorithms.
arXiv Detail & Related papers (2021-12-02T18:52:56Z) - Explainable predictions of different machine learning algorithms used to
predict Early Stage diabetes [0.0]
Diabetes Mellitus which is one of the major diseases can be easily diagnosed by several Machine Learning algorithms.
In this paper we have made a comparative analysis of several machine learning algorithms viz. Random Forest, Decision Tree, Artificial Neural Networks, K Nearest Neighbor, Support Vector Machine, and XGBoost.
As per the experimental results obtained, the Random Forest algorithm has outperformed all the other algorithms with an accuracy of 99 percent on this particular dataset.
arXiv Detail & Related papers (2021-11-18T20:29:03Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
We propose a causally-aware imputation algorithm (MIRACLE) for missing data.
MIRACLE iteratively refines the imputation of a baseline by simultaneously modeling the missingness generating mechanism.
We conduct extensive experiments on synthetic and a variety of publicly available datasets to show that MIRACLE is able to consistently improve imputation.
arXiv Detail & Related papers (2021-11-04T22:38:18Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - RA-GCN: Graph Convolutional Network for Disease Prediction Problems with
Imbalanced Data [47.00510780034136]
Class imbalance is a familiar issue in the field of disease prediction.
In this paper, we propose Re-weighted Adversarial Graph Convolutional Network (RA-GCN) to enhance the performance of the graph-based classifier.
We show the superiority of RA-GCN on synthetic and three publicly available medical datasets compared to the recent method.
arXiv Detail & Related papers (2021-02-27T14:06:27Z) - Approaching Bio Cellular Classification for Malaria Infected Cells Using
Machine Learning and then Deep Learning to compare & analyze K-Nearest
Neighbours and Deep CNNs [0.0]
Malaria is a deadly disease which claims the lives of hundreds of thousands of people every year.
This paper examines different machine learning methods in the context of classifying the presence of malaria in cell images.
arXiv Detail & Related papers (2020-05-22T23:02:36Z) - Automatic Gesture Recognition in Robot-assisted Surgery with
Reinforcement Learning and Tree Search [63.07088785532908]
We propose a framework based on reinforcement learning and tree search for joint surgical gesture segmentation and classification.
Our framework consistently outperforms the existing methods on the suturing task of JIGSAWS dataset in terms of accuracy, edit score and F1 score.
arXiv Detail & Related papers (2020-02-20T13:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.