Differentially Private Exploration in Reinforcement Learning with Linear
Representation
- URL: http://arxiv.org/abs/2112.01585v1
- Date: Thu, 2 Dec 2021 19:59:50 GMT
- Title: Differentially Private Exploration in Reinforcement Learning with Linear
Representation
- Authors: Paul Luyo and Evrard Garcelon and Alessandro Lazaric and Matteo
Pirotta
- Abstract summary: We first consider the setting of linear-mixture MDPs (Ayoub et al., 2020) (a.k.a. model-based setting) and provide an unified framework for analyzing joint and local differential private (DP) exploration.
We further study privacy-preserving exploration in linear MDPs (Jin et al., 2020) (a.k.a. model-free setting) where we provide a $widetildeO(sqrtK/epsilon)$ regret bound for $(epsilon,delta)
- Score: 102.17246636801649
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies privacy-preserving exploration in Markov Decision
Processes (MDPs) with linear representation. We first consider the setting of
linear-mixture MDPs (Ayoub et al., 2020) (a.k.a.\ model-based setting) and
provide an unified framework for analyzing joint and local differential private
(DP) exploration. Through this framework, we prove a
$\widetilde{O}(K^{3/4}/\sqrt{\epsilon})$ regret bound for
$(\epsilon,\delta)$-local DP exploration and a
$\widetilde{O}(\sqrt{K/\epsilon})$ regret bound for $(\epsilon,\delta)$-joint
DP.
We further study privacy-preserving exploration in linear MDPs (Jin et al.,
2020) (a.k.a.\ model-free setting) where we provide a
$\widetilde{O}(\sqrt{K/\epsilon})$ regret bound for $(\epsilon,\delta)$-joint
DP, with a novel algorithm based on low-switching. Finally, we provide insights
into the issues of designing local DP algorithms in this model-free setting.
Related papers
- Private Mean Estimation with Person-Level Differential Privacy [6.621676316292624]
We study person-level differentially private mean estimation in the case where each person holds multiple samples.
We give computationally efficient algorithms under approximate-DP and computationally inefficient algorithms under pure DP, and our nearly matching lower bounds hold for the most permissive case of approximate DP.
arXiv Detail & Related papers (2024-05-30T18:20:35Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Improved Algorithm for Adversarial Linear Mixture MDPs with Bandit
Feedback and Unknown Transition [71.33787410075577]
We study reinforcement learning with linear function approximation, unknown transition, and adversarial losses.
We propose a new algorithm that attains an $widetildeO(dsqrtHS3K + sqrtHSAK)$ regret with high probability.
arXiv Detail & Related papers (2024-03-07T15:03:50Z) - Tractable MCMC for Private Learning with Pure and Gaussian Differential Privacy [23.12198546384976]
Posterior sampling provides $varepsilon$-pure differential privacy guarantees.
It does not suffer from potentially unbounded privacy breach introduced by $(varepsilon,delta)$-approximate DP.
In practice, however, one needs to apply approximate sampling methods such as Markov chain Monte Carlo.
arXiv Detail & Related papers (2023-10-23T07:54:39Z) - Improved Analysis of Sparse Linear Regression in Local Differential
Privacy Model [38.66115499136791]
We revisit the problem of sparse linear regression in the local differential privacy (LDP) model.
We propose an innovative NLDP algorithm, the very first of its kind for the problem.
Our findings reveal fundamental differences between the non-private case, central DP model, and local DP model in the sparse linear regression problem.
arXiv Detail & Related papers (2023-10-11T10:34:52Z) - Near Sample-Optimal Reduction-based Policy Learning for Average Reward
MDP [58.13930707612128]
This work considers the sample complexity of obtaining an $varepsilon$-optimal policy in an average reward Markov Decision Process (AMDP)
We prove an upper bound of $widetilde O(H varepsilon-3 ln frac1delta)$ samples per state-action pair, where $H := sp(h*)$ is the span of bias of any optimal policy, $varepsilon$ is the accuracy and $delta$ is the failure probability.
arXiv Detail & Related papers (2022-12-01T15:57:58Z) - Locally Differentially Private Reinforcement Learning for Linear Mixture
Markov Decision Processes [78.27542864367821]
Reinforcement learning (RL) algorithms can be used to provide personalized services, which rely on users' private and sensitive data.
To protect the users' privacy, privacy-preserving RL algorithms are in demand.
We propose a novel $(varepsilon, delta)$-LDP algorithm for learning a class of Markov decision processes (MDPs) dubbed linear mixture MDPs.
arXiv Detail & Related papers (2021-10-19T17:44:09Z) - Reward-Free Model-Based Reinforcement Learning with Linear Function
Approximation [92.99933928528797]
We study the model-based reward-free reinforcement learning with linear function approximation for episodic Markov decision processes (MDPs)
In the planning phase, the agent is given a specific reward function and uses samples collected from the exploration phase to learn a good policy.
We show that to obtain an $epsilon$-optimal policy for arbitrary reward function, UCRL-RFE needs to sample at most $tilde O(H4d(H + d)epsilon-2)$ episodes.
arXiv Detail & Related papers (2021-10-12T23:03:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.