論文の概要: Automatic evaluation of scientific abstracts through natural language
processing
- arxiv url: http://arxiv.org/abs/2112.01842v1
- Date: Sun, 14 Nov 2021 12:55:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-12 18:55:06.887619
- Title: Automatic evaluation of scientific abstracts through natural language
processing
- Title(参考訳): 自然言語処理による科学要約の自動評価
- Authors: Lucas G. O. Lopes, Thales M. A. Vieira, and William W. M. Lira
- Abstract要約: 本稿では,科学的研究の分類,セグメント化,評価を行う自然言語処理アルゴリズムを提案する。
提案フレームワークは, テキスト分類手法を用いて, 解決すべき課題に応じて, 抽象テキストを分類する。
要約の方法論は、その結果の感情分析に基づいてランク付けされる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This work presents a framework to classify and evaluate distinct research
abstract texts which are focused on the description of processes and their
applications. In this context, this paper proposes natural language processing
algorithms to classify, segment and evaluate the results of scientific work.
Initially, the proposed framework categorize the abstract texts into according
to the problems intended to be solved by employing a text classification
approach. Then, the abstract text is segmented into problem description,
methodology and results. Finally, the methodology of the abstract is ranked
based on the sentiment analysis of its results. The proposed framework allows
us to quickly rank the best methods to solve specific problems. To validate the
proposed framework, oil production anomaly abstracts were experimented and
achieved promising results.
- Abstract(参考訳): 本研究は,プロセスとそのアプリケーションの記述に焦点をあてた,異なる研究抽象テキストの分類と評価を行うフレームワークを提案する。
本稿では,研究成果の分類,セグメント化,評価を行う自然言語処理アルゴリズムを提案する。
当初,提案フレームワークは,テキスト分類手法を用いて解決しようとする問題に応じて,抽象テキストを分類する。
次に、抽象テキストを問題記述、方法論、結果に分割する。
最後に、分析結果の感情分析に基づいて、要約の方法論をランク付けする。
提案したフレームワークは、特定の問題を解決する最良のメソッドを素早くランク付けすることができる。
提案手法を検証するため,石油生産異常抽象化実験を行い,有望な結果を得た。
関連論文リスト
- Detecting Statements in Text: A Domain-Agnostic Few-Shot Solution [1.3654846342364308]
最先端のアプローチは通常、作成にコストがかかる大規模な注釈付きデータセット上の微調整モデルを含む。
本稿では,クレームに基づくテキスト分類タスクの共通パラダイムとして,定性的で多目的な少ショット学習手法の提案とリリースを行う。
本手法は,気候変動対策,トピック/スタンス分類,うつ病関連症状検出の3つの課題の文脈で説明する。
論文 参考訳(メタデータ) (2024-05-09T12:03:38Z) - Factually Consistent Summarization via Reinforcement Learning with
Textual Entailment Feedback [57.816210168909286]
我々は,この問題を抽象的な要約システムで解くために,テキストエンテーメントモデルの最近の進歩を活用している。
我々は、事実整合性を最適化するために、レファレンスフリーのテキストエンターメント報酬を用いた強化学習を用いる。
自動測定と人的評価の両結果から,提案手法は生成した要約の忠実さ,サリエンス,簡潔さを著しく向上させることが示された。
論文 参考訳(メタデータ) (2023-05-31T21:04:04Z) - Detecting automatically the layout of clinical documents to enhance the
performances of downstream natural language processing [53.797797404164946]
我々は,臨床用PDF文書を処理し,臨床用テキストのみを抽出するアルゴリズムを設計した。
このアルゴリズムは、PDFを使った最初のテキスト抽出と、続いてボディテキスト、左書き、フッタなどのカテゴリに分類される。
それぞれのセクションのテキストから興味ある医学的概念を抽出し,医療的パフォーマンスを評価した。
論文 参考訳(メタデータ) (2023-05-23T08:38:33Z) - Unsupervised Scientific Abstract Segmentation with Normalized Mutual
Information [4.129225533930966]
抽象的セグメンテーションのための正規化相互情報(NMI)を実証的に検討する。
非構造的抽象化では、GreedyCASは全ての評価指標で最高の性能を発揮する。
NMIと評価指標との強い相関は,NMIが抽象的セグメンテーションに有効であることを明らかにする。
論文 参考訳(メタデータ) (2023-05-19T09:53:45Z) - Lay Text Summarisation Using Natural Language Processing: A Narrative
Literature Review [1.8899300124593648]
本研究の目的は, テキスト要約の手法を記述し, 比較することである。
私たちは82の記事をスクリーニングし、同じデータセットを使用して2020年から2021年の間に8つの関連論文を公開しました。
ハイブリッドアプローチにおける抽出的および抽象的要約法の組み合わせが最も有効であることが判明した。
論文 参考訳(メタデータ) (2023-03-24T18:30:50Z) - The Factual Inconsistency Problem in Abstractive Text Summarization: A
Survey [25.59111855107199]
Seq2Seqフレームワークによって開発されたニューラルエンコーダデコーダモデルは、より抽象的な要約を生成するという目標を達成するために提案されている。
高いレベルでは、そのようなニューラルネットワークは、使用される単語やフレーズに制約を加えることなく、自由に要約を生成することができる。
しかし、神経モデルの抽象化能力は二重刃の剣である。
論文 参考訳(メタデータ) (2021-04-30T08:46:13Z) - Semantic Analysis for Automated Evaluation of the Potential Impact of
Research Articles [62.997667081978825]
本稿では,情報理論に基づくテキスト意味のベクトル表現のための新しい手法を提案する。
この情報意味論がLeicester Scientific Corpusに基づいてテキスト分類にどのように使用されるかを示す。
テキストの意味を表現するための情報的アプローチは,研究論文の科学的影響を効果的に予測する方法であることを示す。
論文 参考訳(メタデータ) (2021-04-26T20:37:13Z) - Topic-Centric Unsupervised Multi-Document Summarization of Scientific
and News Articles [3.0504782036247438]
本稿では,トピック中心のマルチドキュメント要約フレームワークを提案し,抽象的な要約を生成する。
提案アルゴリズムは,有能な言語単位選択とテキスト生成技術を開発することにより,抽象的な要約を生成する。
提案手法は,自動抽出評価指標を用いて評価した場合の最先端技術と一致し,人間の5つの評価指標の抽象的要約に優れる。
論文 参考訳(メタデータ) (2020-11-03T04:04:21Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Factは、質問応答モデルから学んだ知識を活用して、スパン選択によるシステム生成サマリーの補正を行う2つの事実補正モデルのスイートである。
我々のモデルは、ソースコードのセマンティック一貫性を確保するために、反復的または自動回帰的にエンティティを置き換えるために、シングルまたはマルチマスキング戦略を採用している。
実験の結果,自動測定と人的評価の両面において,要約品質を犠牲にすることなく,システム生成要約の事実整合性を大幅に向上させることができた。
論文 参考訳(メタデータ) (2020-10-06T02:51:02Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
過去10年は、ディープラーニングが前例のない成功を収めたために、この分野の研究が急増している。
本稿では,1961年から2021年までの最先端のアプローチを見直し,そのギャップを埋める。
特徴抽出と分類に使用されるテキストとモデルに基づいて,テキスト分類のための分類を作成する。
論文 参考訳(メタデータ) (2020-08-02T00:09:03Z) - A computational model implementing subjectivity with the 'Room Theory'.
The case of detecting Emotion from Text [68.8204255655161]
本研究は,テキスト分析における主観性と一般的文脈依存性を考慮した新しい手法を提案する。
単語間の類似度を用いて、ベンチマーク中の要素の相対的関連性を抽出することができる。
この方法は、主観的評価がテキストの相対値や意味を理解するために関係しているすべてのケースに適用できる。
論文 参考訳(メタデータ) (2020-05-12T21:26:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。