Prediction of Household-level Heat-Consumption using PSO enhanced SVR
Model
- URL: http://arxiv.org/abs/2112.01908v1
- Date: Fri, 3 Dec 2021 13:46:16 GMT
- Title: Prediction of Household-level Heat-Consumption using PSO enhanced SVR
Model
- Authors: Satyaki Chatterjee, Siming Bayer, and Andreas Maier
- Abstract summary: We propose a forecasting framework for thermal energy consumption within a district heating system (DES) based on kernel Support Vector Regression (kSVR) using real-world smart meter data.
The average MAPE is reduced to 2.07% and 2.64% for the individual meter-specific forecasting and for forecasting of societal consumption, respectively.
- Score: 5.3580471186206005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In combating climate change, an effective demand-based energy supply
operation of the district energy system (DES) for heating or cooling is
indispensable. As a consequence, an accurate forecast of heat consumption on
the consumer side poses an important first step towards an optimal energy
supply. However, due to the non-linearity and non-stationarity of heat
consumption data, the prediction of the thermal energy demand of DES remains
challenging. In this work, we propose a forecasting framework for thermal
energy consumption within a district heating system (DHS) based on kernel
Support Vector Regression (kSVR) using real-world smart meter data. Particle
Swarm Optimization (PSO) is employed to find the optimal hyper-parameter for
the kSVR model which leads to the superiority of the proposed methods when
compared to a state-of-the-art ARIMA model. The average MAPE is reduced to
2.07% and 2.64% for the individual meter-specific forecasting and for
forecasting of societal consumption, respectively.
Related papers
- Improving Building Temperature Forecasting: A Data-driven Approach with
System Scenario Clustering [3.2114754609864695]
Heat, Ventilation and Air Conditioning systems cost approximately 40% of primary energy usage in the building sector.
For large-scale HVAC system management, it is difficult to construct a detailed model for each subsystem.
New data-driven room temperature prediction model is proposed based on the k-means clustering method.
arXiv Detail & Related papers (2024-02-21T09:04:45Z) - Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
This work presents a global Transformer architecture for indoor temperature forecasting in multi-room buildings.
It aims at optimizing energy consumption and reducing greenhouse gas emissions associated with HVAC systems.
Notably, this study is the first to apply a Transformer architecture for indoor temperature forecasting in multi-room buildings.
arXiv Detail & Related papers (2023-10-31T14:09:32Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Data-driven HVAC Control Using Symbolic Regression: Design and
Implementation [0.0]
This study proposes a design and implementation methodology of data-driven heating, ventilation, and air conditioning () control.
Building thermodynamics is modeled using a symbolic regression model (SRM) built from the collected data.
The proposed framework reduces the peak power by 16.1% compared to the widely used thermostat controller.
arXiv Detail & Related papers (2023-04-06T13:57:50Z) - Heat Demand Forecasting with Multi-Resolutional Representation of
Heterogeneous Temporal Ensemble [6.748976209131109]
We propose a forecasting framework for heat demand based on neural networks.
CNNs are utilized to predict the heat load multi-step ahead.
The proposed framework consistently outperforms the state-of-the-art baseline method.
arXiv Detail & Related papers (2022-10-24T10:48:53Z) - Comparative Analysis of Time Series Forecasting Approaches for Household
Electricity Consumption Prediction [3.7458346891274013]
We use Weka, a data mining tool, to first apply models on hourly and daily household energy consumption datasets available from Kaggle data science community.
Secondly, we also implemented time series forecasting models, ARIMA and VAR, in python to forecast household energy consumption of selected South Korean households with and without weather data.
Our results show that the best methods for the forecasting of energy consumption prediction are Support Vector Regression followed by Multilayer Perceptron and Gaussian Process Regression.
arXiv Detail & Related papers (2022-07-03T12:16:54Z) - A novel MDPSO-SVR hybrid model for feature selection in electricity
consumption forecasting [0.0]
In this study, a modified discrete particle swarm optimization (MDPSO) was employed for feature selection.
Compared with other well-established counterparts, MDPSO-SVR model consistently performs best in two real-world electricity consumption datasets.
arXiv Detail & Related papers (2022-06-14T07:50:04Z) - A Hybrid Model for Forecasting Short-Term Electricity Demand [59.372588316558826]
Currently the UK Electric market is guided by load (demand) forecasts published every thirty minutes by the regulator.
We present HYENA: a hybrid predictive model that combines feature engineering (selection of the candidate predictor features), mobile-window predictors and LSTM encoder-decoders.
arXiv Detail & Related papers (2022-05-20T22:13:25Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.