Bayesian LSTM for indoor temperature modeling
- URL: http://arxiv.org/abs/2504.03350v1
- Date: Fri, 04 Apr 2025 11:07:23 GMT
- Title: Bayesian LSTM for indoor temperature modeling
- Authors: Emma Hannula, Arttu Häkkinen, Antti Solonen, Felibe Uribe, Jana de Wiljes, Lassi Roininen,
- Abstract summary: We propose a Bayesian Long Short-Term Memory architecture for indoor temperature modeling.<n>Our experiments across 100 real-world buildings demonstrate that the Bayesian LSTM outperforms an industrial physics-based model in predictive accuracy.<n>This work advances data-driven heating control by balancing predictive performance with the transparency and reliability required for real-world heating MPC applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Improving energy efficiency of building heating systems is essential for reducing global energy consumption and greenhouse gas emissions. Traditional control methods in buildings rely on static heating curves based solely on outdoor temperature measurements, neglecting system state and free heat sources like solar gain. Model predictive control (MPC) not only addresses these limitations but further optimizes heating control by incorporating weather forecasts and system state predictions. However, current industrial MPC solutions often use simplified physics-inspired models, which compromise accuracy for interpretability. While purely data-driven models offer better predictive performance, they face challenges like overfitting and lack of transparency. To bridge this gap, we propose a Bayesian Long Short-Term Memory (LSTM) architecture for indoor temperature modeling. Our experiments across 100 real-world buildings demonstrate that the Bayesian LSTM outperforms an industrial physics-based model in predictive accuracy, enabling potential for improved energy efficiency and thermal comfort if deployed in heating MPC solutions. Over deterministic black-box approaches, the Bayesian framework provides additional advantages by improving generalization ability and allowing interpretation of predictions via uncertainty quantification. This work advances data-driven heating control by balancing predictive performance with the transparency and reliability required for real-world heating MPC applications.
Related papers
- Deployment of ARX Models for Thermal Forecasting in Power Electronics Boards Using WBG Semiconductors [37.69303106863453]
ARX parametric models provide accurate temperature predictions without detailed understanding of component thickness disparities or material physical properties.
These models emerge as a reliable alternative to FEM simulations and conventional thermal models.
arXiv Detail & Related papers (2024-11-25T14:01:17Z) - COME: Test-time adaption by Conservatively Minimizing Entropy [45.689829178140634]
Conservatively Minimize the Entropy (COME) is a drop-in replacement of traditional entropy (EM)
COME explicitly models the uncertainty by characterizing a Dirichlet prior distribution over model predictions.
We show that COME achieves state-of-the-art performance on commonly used benchmarks.
arXiv Detail & Related papers (2024-10-12T09:20:06Z) - Predicting Solar Heat Production to Optimize Renewable Energy Usage [0.0]
We present an approach that uses machine learning to automatically construct and continuously adapt a model that predicts heat production.
We present positive empirical results for the predictive accuracy of our solution, and discuss the impact of these results on the end-to-end system.
arXiv Detail & Related papers (2024-05-16T10:32:39Z) - Improving Building Temperature Forecasting: A Data-driven Approach with
System Scenario Clustering [3.2114754609864695]
Heat, Ventilation and Air Conditioning systems cost approximately 40% of primary energy usage in the building sector.
For large-scale HVAC system management, it is difficult to construct a detailed model for each subsystem.
New data-driven room temperature prediction model is proposed based on the k-means clustering method.
arXiv Detail & Related papers (2024-02-21T09:04:45Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
This work presents a global Transformer architecture for indoor temperature forecasting in multi-room buildings.
It aims at optimizing energy consumption and reducing greenhouse gas emissions associated with HVAC systems.
Notably, this study is the first to apply a Transformer architecture for indoor temperature forecasting in multi-room buildings.
arXiv Detail & Related papers (2023-10-31T14:09:32Z) - DECODE: Data-driven Energy Consumption Prediction leveraging Historical
Data and Environmental Factors in Buildings [1.2891210250935148]
This paper introduces a Long Short-Term Memory (LSTM) model designed to forecast building energy consumption.
The LSTM model provides accurate short, medium, and long-term energy predictions for residential and commercial buildings.
It demonstrates exceptional prediction accuracy, boasting the highest R2 score of 0.97 and the most favorable mean absolute error (MAE) of 0.007.
arXiv Detail & Related papers (2023-09-06T11:02:53Z) - Interpreting Machine Learning Models for Room Temperature Prediction in
Non-domestic Buildings [0.0]
This work presents an interpretable machine learning model aimed at predicting room temperature in non-domestic buildings.
We demonstrate experimentally that the proposed model can accurately forecast room temperatures eight hours ahead in real-time.
arXiv Detail & Related papers (2021-11-23T11:16:35Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.