Solving hadron structures using the basis light-front quantization
approach on quantum computers
- URL: http://arxiv.org/abs/2112.01927v3
- Date: Mon, 31 Oct 2022 18:42:54 GMT
- Title: Solving hadron structures using the basis light-front quantization
approach on quantum computers
- Authors: Wenyang Qian, Robert Basili, Soham Pal, Glenn Luecke, and James P.
Vary
- Abstract summary: We show that quantum computing can be used to solve for the structure of hadrons governed by strongly-interacting quantum field theory.
We present the numerical calculations on simulated quantum devices using the basis light-front quantization approach.
- Score: 0.8726465590483234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing has demonstrated the potential to revolutionize our
understanding of nuclear, atomic, and molecular structure by obtaining
forefront solutions in non-relativistic quantum many-body theory. In this work,
we show that quantum computing can be used to solve for the structure of
hadrons, governed by strongly-interacting relativistic quantum field theory.
Following our previous work on light unflavored mesons as a relativistic
bound-state problem within the nonperturbative Hamiltonian formalism, we
present the numerical calculations on simulated quantum devices using the basis
light-front quantization (BLFQ) approach. We implement and compare the
variational quantum eigensolver (VQE) and the subspace-search variational
quantum eigensolver (SSVQE) to find the low-lying mass spectrum of the light
meson system and its corresponding light-front wave functions as quantum states
from ideal simulators, noisy simulators, and IBM quantum computers. Based on
obtained quantum states, we evaluate the meson decay constants and parton
distribution functions directly on the quantum circuits. Our calculations on
the quantum computers and simulators are in reasonable agreement with accurate
numerical solutions solved on classical computers when noises are moderately
small, and our overall results are comparable with the available experimental
data.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A quantum computing concept for 1-D elastic wave simulation with exponential speedup [0.0]
We present a quantum computing concept for 1-D elastic wave propagation in heterogeneous media.
The method rests on a finite-difference approximation, followed by a sparsity-preserving transformation of the discrete elastic wave equation to a Schr"odinger equation.
An implementation on an error-free quantum simulator verifies our approach and forms the basis of numerical experiments.
arXiv Detail & Related papers (2023-12-22T14:58:01Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Variational Quantum Eigensolver for SU($N$) Fermions [0.0]
Variational quantum algorithms aim at harnessing the power of noisy intermediate-scale quantum computers.
We apply the variational quantum eigensolver to study the ground-state properties of $N$-component fermions.
Our approach lays out the basis for a current-based quantum simulator of many-body systems.
arXiv Detail & Related papers (2021-06-29T16:39:30Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum simulation of open quantum systems in heavy-ion collisions [0.0]
We present a framework to simulate the dynamics of hard probes such as heavy quarks or jets in a hot, strongly-coupled quark-gluon plasma (QGP) on a quantum computer.
Our work demonstrates the feasibility of simulating open quantum systems on current and near-term quantum devices.
arXiv Detail & Related papers (2020-10-07T18:00:02Z) - Light-Front Field Theory on Current Quantum Computers [0.06524460254566902]
We present a quantum algorithm for simulation of quantum field theory in the light-front formulation.
We demonstrate how existing quantum devices can be used to study the structure of bound states in relativistic nuclear physics.
arXiv Detail & Related papers (2020-09-16T18:32:00Z) - Quantum simulation of quantum field theories as quantum chemistry [9.208624182273288]
Conformal truncation is a powerful numerical method for solving generic strongly-coupled quantum field theories.
We show that quantum computation could not only help us understand fundamental physics in the lattice approximation, but also simulate quantum field theory methods directly.
arXiv Detail & Related papers (2020-04-28T01:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.