Gated2Gated: Self-Supervised Depth Estimation from Gated Images
- URL: http://arxiv.org/abs/2112.02416v1
- Date: Sat, 4 Dec 2021 19:47:38 GMT
- Title: Gated2Gated: Self-Supervised Depth Estimation from Gated Images
- Authors: Amanpreet Walia, Stefanie Walz, Mario Bijelic, Fahim Mannan, Frank
Julca-Aguilar, Michael Langer, Werner Ritter, Felix Heide
- Abstract summary: Gated cameras hold promise as an alternative to scanning LiDAR sensors with high-resolution 3D depth.
We propose an entirely self-supervised depth estimation method that uses gated intensity profiles and temporal consistency as a training signal.
- Score: 22.415893281441928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gated cameras hold promise as an alternative to scanning LiDAR sensors with
high-resolution 3D depth that is robust to back-scatter in fog, snow, and rain.
Instead of sequentially scanning a scene and directly recording depth via the
photon time-of-flight, as in pulsed LiDAR sensors, gated imagers encode depth
in the relative intensity of a handful of gated slices, captured at megapixel
resolution. Although existing methods have shown that it is possible to decode
high-resolution depth from such measurements, these methods require
synchronized and calibrated LiDAR to supervise the gated depth decoder --
prohibiting fast adoption across geographies, training on large unpaired
datasets, and exploring alternative applications outside of automotive use
cases. In this work, we fill this gap and propose an entirely self-supervised
depth estimation method that uses gated intensity profiles and temporal
consistency as a training signal. The proposed model is trained end-to-end from
gated video sequences, does not require LiDAR or RGB data, and learns to
estimate absolute depth values. We take gated slices as input and disentangle
the estimation of the scene albedo, depth, and ambient light, which are then
used to learn to reconstruct the input slices through a cyclic loss. We rely on
temporal consistency between a given frame and neighboring gated slices to
estimate depth in regions with shadows and reflections. We experimentally
validate that the proposed approach outperforms existing supervised and
self-supervised depth estimation methods based on monocular RGB and stereo
images, as well as supervised methods based on gated images.
Related papers
- Depth-Guided Semi-Supervised Instance Segmentation [62.80063539262021]
Semi-Supervised Instance (SSIS) aims to leverage an amount of unlabeled data during training.
Previous frameworks primarily utilized the RGB information of unlabeled images to generate pseudo-labels.
We introduce a Depth-Guided (DG) framework to overcome this limitation.
arXiv Detail & Related papers (2024-06-25T09:36:50Z) - SelfReDepth: Self-Supervised Real-Time Depth Restoration for Consumer-Grade Sensors [42.48726526726542]
SelfReDepth is a self-supervised deep learning technique for depth restoration.
It uses multiple sequential depth frames and color data to achieve high-quality depth videos with temporal coherence.
Our results demonstrate our approach's real-time performance on real-world datasets.
arXiv Detail & Related papers (2024-06-05T15:38:02Z) - Cross-spectral Gated-RGB Stereo Depth Estimation [34.31592077757453]
Gated cameras flood-illuminate a scene and capture the time-gated impulse response of a scene.
We propose a novel stereo-depth estimation method that is capable of exploiting these multi-modal multi-view depth cues.
The proposed method achieves accurate depth at long ranges, outperforming the next best existing method by 39% for ranges of 100 to 220m in MAE on accumulated LiDAR ground-truth.
arXiv Detail & Related papers (2024-05-21T13:10:43Z) - Robust Depth Enhancement via Polarization Prompt Fusion Tuning [112.88371907047396]
We present a framework that leverages polarization imaging to improve inaccurate depth measurements from various depth sensors.
Our method first adopts a learning-based strategy where a neural network is trained to estimate a dense and complete depth map from polarization data and a sensor depth map from different sensors.
To further improve the performance, we propose a Polarization Prompt Fusion Tuning (PPFT) strategy to effectively utilize RGB-based models pre-trained on large-scale datasets.
arXiv Detail & Related papers (2024-04-05T17:55:33Z) - Shakes on a Plane: Unsupervised Depth Estimation from Unstabilized
Photography [54.36608424943729]
We show that in a ''long-burst'', forty-two 12-megapixel RAW frames captured in a two-second sequence, there is enough parallax information from natural hand tremor alone to recover high-quality scene depth.
We devise a test-time optimization approach that fits a neural RGB-D representation to long-burst data and simultaneously estimates scene depth and camera motion.
arXiv Detail & Related papers (2022-12-22T18:54:34Z) - Non-learning Stereo-aided Depth Completion under Mis-projection via
Selective Stereo Matching [0.5067618621449753]
We propose a non-learning depth completion method for a sparse depth map captured using a light detection and ranging (LiDAR) sensor guided by a pair of stereo images.
The proposed method reduced the mean absolute error (MAE) of the depth estimation to 0.65 times and demonstrated approximately twice more accurate estimation in the long range.
arXiv Detail & Related papers (2022-10-04T07:46:56Z) - Uncertainty Guided Depth Fusion for Spike Camera [49.41822923588663]
We propose a novel Uncertainty-Guided Depth Fusion (UGDF) framework to fuse predictions of monocular and stereo depth estimation networks for spike camera.
Our framework is motivated by the fact that stereo spike depth estimation achieves better results at close range.
In order to demonstrate the advantage of spike depth estimation over traditional camera depth estimation, we contribute a spike-depth dataset named CitySpike20K.
arXiv Detail & Related papers (2022-08-26T13:04:01Z) - Event Guided Depth Sensing [50.997474285910734]
We present an efficient bio-inspired event-camera-driven depth estimation algorithm.
In our approach, we illuminate areas of interest densely, depending on the scene activity detected by the event camera.
We show the feasibility of our approach in a simulated autonomous driving sequences and real indoor environments.
arXiv Detail & Related papers (2021-10-20T11:41:11Z) - Progressive Depth Learning for Single Image Dehazing [56.71963910162241]
Existing dehazing methods often ignore the depth cues and fail in distant areas where heavier haze disturbs the visibility.
We propose a deep end-to-end model that iteratively estimates image depths and transmission maps.
Our approach benefits from explicitly modeling the inner relationship of image depth and transmission map, which is especially effective for distant hazy areas.
arXiv Detail & Related papers (2021-02-21T05:24:18Z) - Multi-Modal Depth Estimation Using Convolutional Neural Networks [0.8701566919381223]
This paper addresses the problem of dense depth predictions from sparse distance sensor data and a single camera image on challenging weather conditions.
It explores the significance of different sensor modalities such as camera, Radar, and Lidar for estimating depth by applying Deep Learning approaches.
arXiv Detail & Related papers (2020-12-17T15:31:49Z) - Self-Attention Dense Depth Estimation Network for Unrectified Video
Sequences [6.821598757786515]
LiDAR and radar sensors are the hardware solution for real-time depth estimation.
Deep learning based self-supervised depth estimation methods have shown promising results.
We propose a self-attention based depth and ego-motion network for unrectified images.
arXiv Detail & Related papers (2020-05-28T21:53:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.