SelfReDepth: Self-Supervised Real-Time Depth Restoration for Consumer-Grade Sensors
- URL: http://arxiv.org/abs/2406.03388v1
- Date: Wed, 5 Jun 2024 15:38:02 GMT
- Title: SelfReDepth: Self-Supervised Real-Time Depth Restoration for Consumer-Grade Sensors
- Authors: Alexandre Duarte, Francisco Fernandes, João M. Pereira, Catarina Moreira, Jacinto C. Nascimento, Joaquim Jorge,
- Abstract summary: SelfReDepth is a self-supervised deep learning technique for depth restoration.
It uses multiple sequential depth frames and color data to achieve high-quality depth videos with temporal coherence.
Our results demonstrate our approach's real-time performance on real-world datasets.
- Score: 42.48726526726542
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Depth maps produced by consumer-grade sensors suffer from inaccurate measurements and missing data from either system or scene-specific sources. Data-driven denoising algorithms can mitigate such problems. However, they require vast amounts of ground truth depth data. Recent research has tackled this limitation using self-supervised learning techniques, but it requires multiple RGB-D sensors. Moreover, most existing approaches focus on denoising single isolated depth maps or specific subjects of interest, highlighting a need for methods to effectively denoise depth maps in real-time dynamic environments. This paper extends state-of-the-art approaches for depth-denoising commodity depth devices, proposing SelfReDepth, a self-supervised deep learning technique for depth restoration, via denoising and hole-filling by inpainting full-depth maps captured with RGB-D sensors. The algorithm targets depth data in video streams, utilizing multiple sequential depth frames coupled with color data to achieve high-quality depth videos with temporal coherence. Finally, SelfReDepth is designed to be compatible with various RGB-D sensors and usable in real-time scenarios as a pre-processing step before applying other depth-dependent algorithms. Our results demonstrate our approach's real-time performance on real-world datasets. They show that it outperforms state-of-the-art denoising and restoration performance at over 30fps on Commercial Depth Cameras, with potential benefits for augmented and mixed-reality applications.
Related papers
- Compressed Depth Map Super-Resolution and Restoration: AIM 2024 Challenge Results [53.405958915687265]
This challenge introduces a focus on developing innovative depth upsampling techniques to reconstruct high-quality depth maps from compressed data.
By enhancing depth upsampling methods, this challenge aims to improve the efficiency and quality of depth map reconstruction.
Our goal is to advance the state-of-the-art in depth processing technologies, thereby enhancing the overall user experience in AR and VR applications.
arXiv Detail & Related papers (2024-09-24T17:50:18Z) - Robust Depth Enhancement via Polarization Prompt Fusion Tuning [112.88371907047396]
We present a framework that leverages polarization imaging to improve inaccurate depth measurements from various depth sensors.
Our method first adopts a learning-based strategy where a neural network is trained to estimate a dense and complete depth map from polarization data and a sensor depth map from different sensors.
To further improve the performance, we propose a Polarization Prompt Fusion Tuning (PPFT) strategy to effectively utilize RGB-based models pre-trained on large-scale datasets.
arXiv Detail & Related papers (2024-04-05T17:55:33Z) - RDFC-GAN: RGB-Depth Fusion CycleGAN for Indoor Depth Completion [28.634851863097953]
We propose a novel two-branch end-to-end fusion network named RDFC-GAN.
It takes a pair of RGB and incomplete depth images as input to predict a dense and completed depth map.
The first branch employs an encoder-decoder structure, by adhering to the Manhattan world assumption.
The other branch applies an RGB-depth fusion CycleGAN, adept at translating RGB imagery into detailed, textured depth maps.
arXiv Detail & Related papers (2023-06-06T11:03:05Z) - Domain Randomization-Enhanced Depth Simulation and Restoration for
Perceiving and Grasping Specular and Transparent Objects [28.84776177634971]
We propose a powerful RGBD fusion network, SwinDRNet, for depth restoration.
We also propose Domain Randomization-Enhanced Depth Simulation (DREDS) approach to simulate an active stereo depth system.
We show that our depth restoration effectively boosts the performance of downstream tasks.
arXiv Detail & Related papers (2022-08-07T19:17:16Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
We propose a novel multi-task and multi-modal filtered transformer (MMFT) network for RGB-D salient object detection (SOD)
Specifically, we unify three complementary tasks: depth estimation, salient object detection and contour estimation. The multi-task mechanism promotes the model to learn the task-aware features from the auxiliary tasks.
Experiments show that it not only significantly surpasses the depth-based RGB-D SOD methods on multiple datasets, but also precisely predicts a high-quality depth map and salient contour at the same time.
arXiv Detail & Related papers (2022-03-09T17:20:18Z) - Gated2Gated: Self-Supervised Depth Estimation from Gated Images [22.415893281441928]
Gated cameras hold promise as an alternative to scanning LiDAR sensors with high-resolution 3D depth.
We propose an entirely self-supervised depth estimation method that uses gated intensity profiles and temporal consistency as a training signal.
arXiv Detail & Related papers (2021-12-04T19:47:38Z) - Towards Fast and Accurate Real-World Depth Super-Resolution: Benchmark
Dataset and Baseline [48.69396457721544]
We build a large-scale dataset named "RGB-D-D" to promote the study of depth map super-resolution (SR)
We provide a fast depth map super-resolution (FDSR) baseline, in which the high-frequency component adaptively decomposed from RGB image to guide the depth map SR.
For the real-world LR depth maps, our algorithm can produce more accurate HR depth maps with clearer boundaries and to some extent correct the depth value errors.
arXiv Detail & Related papers (2021-04-13T13:27:26Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
Estimating scene geometry from data obtained with cost-effective sensors is key for robots and self-driving cars.
In this paper, we study the problem of predicting dense depth from a single RGB image with optional sparse measurements from low-cost active depth sensors.
We introduce Sparse Networks (SANs), a new module enabling monodepth networks to perform both the tasks of depth prediction and completion.
arXiv Detail & Related papers (2021-03-30T21:22:26Z) - Self-supervised Depth Denoising Using Lower- and Higher-quality RGB-D
sensors [8.34403807284064]
We propose a self-supervised depth denoising approach to denoise and refine depth coming from a low quality sensor.
We record simultaneous RGB-D sequences with unzynchronized lower- and higher-quality cameras and solve a challenging problem of aligning sequences both temporally and spatially.
We then learn a deep neural network to denoise the lower-quality depth using the matched higher-quality data as a source of supervision signal.
arXiv Detail & Related papers (2020-09-10T11:18:11Z) - Depth Map Estimation of Dynamic Scenes Using Prior Depth Information [14.03714478207425]
We propose an algorithm that estimates depth maps using concurrently collected images and a previously measured depth map for dynamic scenes.
Our goal is to balance the acquisition of depth between the active depth sensor and computation, without incurring a large computational cost.
Our approach can obtain dense depth maps at up to real-time (30 FPS) on a standard laptop computer, which is orders of magnitude faster than similar approaches.
arXiv Detail & Related papers (2020-02-02T01:04:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.