論文の概要: Intention Recognition for Multiple Agents
- arxiv url: http://arxiv.org/abs/2112.02513v1
- Date: Sun, 5 Dec 2021 08:50:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-07 16:44:35.580727
- Title: Intention Recognition for Multiple Agents
- Title(参考訳): 複数のエージェントに対する意図認識
- Authors: Zhang Zhang, Yifeng Zeng, Yingke Chen
- Abstract要約: エージェントの振る舞いをモデル化するための規範的なアプローチを採用します。
行動モデルにランドマークを導入します。
アクションシーケンスのみを計画にフォーカスすることで、モデルを洗練します。
- 参考スコア(独自算出の注目度): 11.728085459365651
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intention recognition is an important step to facilitate collaboration in
multi-agent systems. Existing work mainly focuses on intention recognition in a
single-agent setting and uses a descriptive model, e.g. Bayesian networks, in
the recognition process. In this paper, we resort to a prescriptive approach to
model agents' behaviour where which their intentions are hidden in implementing
their plans. We introduce landmarks into the behavioural model therefore
enhancing informative features for identifying common intentions for multiple
agents. We further refine the model by focusing only action sequences in their
plan and provide a light model for identifying and comparing their intentions.
The new models provide a simple approach of grouping agents' common intentions
upon partial plans observed in agents' interactions. We provide experimental
results in support.
- Abstract(参考訳): 意図認識はマルチエージェントシステムにおける協調を促進する重要なステップである。
既存の研究は主に単一エージェント環境での意図認識に重点を置いており、認識プロセスではベイズネットワークなどの記述モデルを使用している。
本稿では,計画実行において意図が隠されているモデルエージェントの行動に規範的アプローチを適用する。
行動モデルにランドマークを導入することで,複数のエージェントの共通の意図を特定するための情報的特徴を高める。
さらに,計画中の行動系列のみに注目してモデルを洗練し,意図を識別・比較するための軽量モデルを提供する。
新しいモデルは、エージェントの相互作用に見られる部分的なプランに対するエージェントの共通の意図をグループ化する単純なアプローチを提供する。
サポートに実験結果を提供する。
関連論文リスト
- Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
本稿では,HOP(Hierarchical Opponent Modeling and Planning)を提案する。
HOPは階層的に2つのモジュールから構成される: 相手の目標を推論し、対応する目標条件のポリシーを学ぶ、反対モデリングモジュール。
HOPは、さまざまな未確認エージェントと相互作用する際、優れた少数ショット適応能力を示し、セルフプレイのシナリオで優れている。
論文 参考訳(メタデータ) (2024-06-12T08:48:06Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
現在の言語モデル駆動エージェントは、しばしば効果的なユーザ参加のメカニズムを欠いている。
Intention-in-Interaction (IN3) は明示的なクエリを通してユーザの暗黙の意図を検査するための新しいベンチマークである。
私たちは、タスクの曖昧さを積極的に評価し、ユーザの意図を問う強力なモデルであるMistral-Interactを経験的に訓練し、それらを実行可能な目標へと洗練させます。
論文 参考訳(メタデータ) (2024-02-14T14:36:30Z) - Contrastive learning-based agent modeling for deep reinforcement
learning [31.293496061727932]
エージェントモデリングは、マルチエージェントシステムにおけるインテリジェントマシンエージェントの適応ポリシーを設計する際に必須である。
我々は,エゴエージェントの訓練・実行時の局所的な観察のみに依存する,コントラスト学習に基づくエージェントモデリング(CLAM)手法を考案した。
CLAMは、各エピソードの冒頭から、リアルタイムに一貫した高品質なポリシー表現を生成することができる。
論文 参考訳(メタデータ) (2023-12-30T03:44:12Z) - A Model-Agnostic Framework for Recommendation via Interest-aware Item
Embeddings [4.989653738257287]
Interest-Aware Capsule Network (IaCN)は、関心指向のアイテム表現を直接学習するモデルに依存しないフレームワークである。
IaCNは補助的なタスクとして機能し、アイテムベースと興味ベースの両方の表現の合同学習を可能にする。
提案手法をベンチマークデータセットで評価し、異なるディープニューラルネットワークを含むさまざまなシナリオを探索する。
論文 参考訳(メタデータ) (2023-08-17T22:40:59Z) - Rethinking Trajectory Prediction via "Team Game" [118.59480535826094]
本稿では,対話型グループコンセンサスの概念を明示的に導入した,マルチエージェント軌道予測の新しい定式化について述べる。
チームスポーツと歩行者の2つのマルチエージェント設定において,提案手法は既存手法と比較して常に優れた性能を達成している。
論文 参考訳(メタデータ) (2022-10-17T07:16:44Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - A Consciousness-Inspired Planning Agent for Model-Based Reinforcement
Learning [104.3643447579578]
本稿では、その状態の関連部分に動的に対応できるエンドツーエンドのモデルベース深層強化学習エージェントを提案する。
この設計により、エージェントは関連するオブジェクトに参画することで効果的に計画を学ぶことができ、配布外一般化がより良くなる。
論文 参考訳(メタデータ) (2021-06-03T19:35:19Z) - Deep Interactive Bayesian Reinforcement Learning via Meta-Learning [63.96201773395921]
他のエージェントの戦略に対する不確実性下での最適適応行動は、インタラクティブベイズ強化学習フレームワークを用いて計算することができる。
本稿では,メタラーン近似的信念推論とベイズ最適行動を提案する。
提案手法は, モデルフリーアプローチ, 近似後部からのサンプル採取, 他者のメモリフリーモデル維持, あるいは環境の既知の構造を完全に活用しない既存手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-01-11T13:25:13Z) - Agent Modelling under Partial Observability for Deep Reinforcement
Learning [12.903487594031276]
エージェントモデリングの既存の方法は、実行中にローカルな観察とモデル化されたエージェントの選択されたアクションの知識を仮定する。
制御されたエージェントの局所的な観察に基づいて,モデル化されたエージェントの表現を抽出することを学ぶ。
これらの表現は、深い強化学習を通じて訓練された制御エージェントの決定ポリシーを強化するために使用される。
論文 参考訳(メタデータ) (2020-06-16T18:43:42Z) - Variational Autoencoders for Opponent Modeling in Multi-Agent Systems [9.405879323049659]
マルチエージェントシステムは、共有環境における複数のエージェントの相互作用から生じる複雑な振る舞いを示す。
本研究は,マルチエージェントシステムにおけるエージェントの制御に関心を持ち,ポリシーを定めているエージェントとのインタラクションをうまく学習する。
他のエージェント(反対者)の振る舞いをモデル化することは、システム内のエージェントの相互作用を理解するのに不可欠である。
論文 参考訳(メタデータ) (2020-01-29T13:38:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。