論文の概要: Ensemble and Mixed Learning Techniques for Credit Card Fraud Detection
- arxiv url: http://arxiv.org/abs/2112.02627v1
- Date: Sun, 5 Dec 2021 17:17:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-07 17:03:11.299561
- Title: Ensemble and Mixed Learning Techniques for Credit Card Fraud Detection
- Title(参考訳): クレジットカード不正検出のためのアンサンブルと混合学習技術
- Authors: Daniel H. M. de Souza and Claudio J. Bordin Jr
- Abstract要約: 我々は、K-平均前処理を用いた混合学習技術を用いて、手前の問題に対する訓練済みの分類を行う。
本稿では,OR-logicアルゴリズムの集約による検出率の向上を目的とした,適応型検出アンサンブル手法を提案する。
シミュレーション結果から,提案手法は計算コストを低減し,性能を向上した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Spurious credit card transactions are a significant source of financial
losses and urge the development of accurate fraud detection algorithms. In this
paper, we use machine learning strategies for such an aim. First, we apply a
mixed learning technique that uses K-means preprocessing before trained
classification to the problem at hand. Next, we introduce an adapted detector
ensemble technique that uses OR-logic algorithm aggregation to enhance the
detection rate. Then, both strategies are deployed in tandem in numerical
simulations using real-world transactions data. We observed from simulation
results that the proposed methods diminished computational cost and enhanced
performance concerning state-of-the-art techniques.
- Abstract(参考訳): スプリアスクレジットカード取引は財務損失の重要な源であり、正確な不正検出アルゴリズムの開発を促している。
本稿では,このような目的のために機械学習戦略を用いる。
まず,訓練前のk-means前処理を用いた混合学習手法を目の前の問題に適用する。
次に、OR-logicアルゴリズムの集約を用いて検出率を向上させるための適応型検出器アンサンブル手法を提案する。
次に,実世界の取引データを用いた数値シミュレーションにおいて,両戦略を段階的に展開する。
シミュレーションの結果,提案手法は計算コストを低減し,最先端技術に関する性能を向上した。
関連論文リスト
- Financial Fraud Detection using Jump-Attentive Graph Neural Networks [0.0]
金融サービス部門の大部分は、トランザクションデータをモデル化するために、XGBoost、Random Forest、ニューラルネットワークなど、さまざまな機械学習アルゴリズムを使用している。
非類似ノードからのカモフラージュ検出と重要な特徴情報の保存に有効な効率的な近傍サンプリング手法を用いた新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-07T05:12:51Z) - Neural Active Learning Beyond Bandits [69.99592173038903]
ストリームベースとプールベースの両方のアクティブラーニングをニューラルネットワーク近似を用いて検討する。
ストリームベースおよびプールベースアクティブラーニングのためのニューラルネットワークを新たに設計したエクスプロイトと探索に基づく2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-18T21:52:14Z) - Credit Card Fraud Detection with Subspace Learning-based One-Class
Classification [18.094622095967328]
1クラス分類(OCC)アルゴリズムは、不均衡なデータ分散を扱うのに優れている。
これらのアルゴリズムは、部分空間学習をデータ記述に統合する。
これらのアルゴリズムは、OCCに最適化された低次元の部分空間にデータを変換する。
論文 参考訳(メタデータ) (2023-09-26T12:26:28Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Optimized preprocessing and Tiny ML for Attention State Classification [2.7810511835091427]
信号処理技術と機械学習アルゴリズムを組み合わせた脳波信号から精神状態の分類手法を提案する。
認知負荷作業中に収集した脳波記録のデータセット上で,提案手法の性能を評価する。
論文 参考訳(メタデータ) (2023-03-20T18:17:35Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Segmentation Fault: A Cheap Defense Against Adversarial Machine Learning [0.0]
最近発表されたディープニューラルネットワーク(DNN)に対する攻撃は、重要なシステムでこの技術を使用する際のセキュリティリスクを評価する方法論とツールの重要性を強調している。
本稿では,ディープニューラルネットワーク分類器,特に畳み込みを防御する新しい手法を提案する。
私たちの防衛費は、検出精度の面では安いが、消費電力が少ないという意味では安い。
論文 参考訳(メタデータ) (2021-08-31T04:56:58Z) - Information Theoretic Meta Learning with Gaussian Processes [74.54485310507336]
情報理論の概念,すなわち相互情報と情報のボトルネックを用いてメタ学習を定式化する。
相互情報に対する変分近似を用いることで、メタ学習のための汎用的かつトラクタブルな枠組みを導出する。
論文 参考訳(メタデータ) (2020-09-07T16:47:30Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Stacked Generalizations in Imbalanced Fraud Data Sets using Resampling
Methods [2.741266294612776]
本研究では,メタあるいはスーパーラーナと呼ばれる2段階の機械学習手法を組み合わせることによって,アルゴリズムの性能向上を図る。
アルゴリズムのサンプルセットのすべての置換を考慮に入れたテストハーネスを構築することは、複雑な本質的なデータ構造がすべて徹底的にテストされていることを示す。
論文 参考訳(メタデータ) (2020-04-03T20:38:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。