論文の概要: Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks
- arxiv url: http://arxiv.org/abs/2412.16565v1
- Date: Sat, 21 Dec 2024 10:18:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:54:05.757972
- Title: Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks
- Title(参考訳): MEC支援セルフリーネットワークにおけるクロス層資源配分の学習
- Authors: Chong Zheng, Shiwen He, Yongming Huang, Tony Q. S. Quek,
- Abstract要約: 移動エッジコンピューティング(MEC)を援用したセルフリーネットワーク上でのクロスレイヤリソース割り当ては、データレートを促進するために、送信およびコンピューティングリソースを十分に活用することができる。
深層学習の観点からMEC支援セルフリーネットワークのサブキャリア配置とビームフォーミング最適化について検討した。
- 参考スコア(独自算出の注目度): 71.30914500714262
- License:
- Abstract: Cross-layer resource allocation over mobile edge computing (MEC)-aided cell-free networks can sufficiently exploit the transmitting and computing resources to promote the data rate. However, the technical bottlenecks of traditional methods pose significant challenges to cross-layer optimization. In this paper, joint subcarrier allocation and beamforming optimization are investigated for the MEC-aided cell-free network from the perspective of deep learning to maximize the weighted sum rate. Specifically, we convert the underlying problem into a joint multi-task optimization problem and then propose a centralized multi-task self-supervised learning algorithm to solve the problem so as to avoid costly manual labeling. Therein, two novel and general loss functions, i.e., negative fraction linear loss and exponential linear loss whose advantages in robustness and target domain have been proved and discussed, are designed to enable self-supervised learning. Moreover, we further design a MEC-enabled distributed multi-task self-supervised learning (DMTSSL) algorithm, with low complexity and high scalability to address the challenge of dimensional disaster. Finally, we develop the distance-aware transfer learning algorithm based on the DMTSSL algorithm to handle the dynamic scenario with negligible computation cost. Simulation results under $3$rd generation partnership project 38.901 urban-macrocell scenario demonstrate the superiority of the proposed algorithms over the baseline algorithms.
- Abstract(参考訳): 移動エッジコンピューティング(MEC)を援用したセルフリーネットワーク上でのクロスレイヤリソース割り当ては、データレートを促進するために、送信およびコンピューティングリソースを十分に活用することができる。
しかし、従来の手法の技術的なボトルネックは、層間最適化に重大な課題をもたらす。
本稿では,MEC支援セルフリーネットワークにおいて,重み付け和率を最大化するために,共同サブキャリア割り当てとビームフォーミング最適化を深層学習の観点から検討する。
具体的には,この問題を共同マルチタスク最適化問題に変換し,コストのかかる手動ラベリングを回避するために,集中型マルチタスク自己教師学習アルゴリズムを提案する。
そこで,2つの新規・一般損失関数,すなわち負の分数線形損失と指数線型損失は,強靭性および目標領域の利点を証明し議論され,自己教師付き学習を可能にするように設計されている。
さらに,MEC対応分散マルチタスク自己教師型学習(DMTSSL)アルゴリズムを設計し,低複雑性と高スケーラビリティを実現し,次元災害の課題に対処する。
最後に, DMTSSLアルゴリズムに基づく距離対応移動学習アルゴリズムを開発し, 計算コストを無視して動的シナリオの処理を行う。
第3世代パートナーシッププロジェクト38.901都市マクロセルシナリオによるシミュレーションの結果、提案アルゴリズムがベースラインアルゴリズムよりも優れていることを示す。
関連論文リスト
- Structural Knowledge-Driven Meta-Learning for Task Offloading in
Vehicular Networks with Integrated Communications, Sensing and Computing [21.50450449083369]
タスクオフロードは、オンボードコンピューティングリソースが限られているため、遅延に敏感な車両用アプリケーションの厳格な要件を満たすための潜在的なソリューションである。
本稿では,モデルに基づくAMアルゴリズムとニューラルネットワークを併用した,創造的構造的知識駆動型メタラーニング(SKDML)手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T03:31:59Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
効果的な分散機械学習フレームワークとして、フェデレートラーニング(FL)が登場します。
本稿では,ネットワーク設計と資源オーケストレーションの両面から,スケーラブルな無線FLを実現する上での課題と解決策について論じる。
論文 参考訳(メタデータ) (2023-10-08T08:55:03Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - RHFedMTL: Resource-Aware Hierarchical Federated Multi-Task Learning [11.329273673732217]
フェデレーション学習は、セキュリティを備えた大規模な分散ノード上でAIを可能にする効果的な方法である。
複数の基地局(BS)と端末をまたいだマルチタスク学習を維持しながら、プライバシを確保することは困難である。
本稿では, セルラーワークの自然雲-BS-末端階層に着想を得て, 資源を考慮した階層型MTL (RHFedMTL) ソリューションを提案する。
論文 参考訳(メタデータ) (2023-06-01T13:49:55Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
本研究は,デバイス上の分散フェデレーション学習(FL)システムにおいて,レイテンシとエネルギー消費の重み付け和を最小化する分散マルチリソース割り当て方式を提案する。
システム内の各モバイルデバイスは、指定された領域内でモデルトレーニングプロセスを実行し、それぞれパラメータの導出とアップロードを行うための計算と通信資源を割り当てる。
論文 参考訳(メタデータ) (2022-11-01T14:16:05Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
本稿では,Deep Reinforcement Learning(DRL)に基づくハイブリッド配置ソリューションと,Power of Two Choices原則に基づく専用最適化を提案する。
提案したHuristically-Assisted DRL (HA-DRL) は,他の最先端手法と比較して学習プロセスの高速化と資源利用の促進を可能にする。
論文 参考訳(メタデータ) (2021-05-14T10:04:17Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
無線ネットワークにおいて,共同作業,スペクトル,送信電力配分問題について検討する。
提案アルゴリズムは、標準Q-ラーニングアルゴリズムと比較して、収束に必要なイテレーション数と全ユーザの最大遅延を最大18%、11.1%削減することができる。
論文 参考訳(メタデータ) (2020-07-20T13:46:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。